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Abstract

We develop a Bayesian framework for calibrating flood inundation simulators on

an observation of flood extent, and making calibrated predictions of a future event.

We illustrate the framework using the binary channel (BC) model for the likelihood

of the observed flood extent given a simulation of flood extent. The BC model leads

to poor results, and this motivates the search for a more appropriate likelihood

model, which forms the basis for the rest of the thesis.

We extend the Ising model to regression on a binary image and review methods

for dealing with the intractable normalising constant. We propose novel applica-

tions of path sampling, extend path sampling to sampling over areas, and develop

approximations to path sampling. We also develop the heterogeneous binary chan-

nel (HBC) model to test the effect of heterogeneity and spatial dependence. We

extend the hidden conditional autoregressive (HCAR) model to regression on a

binary image. We show that the limit of the HCAR model as the parameters

approach the boundary is the (improper) hidden intrinsic autoregressive (HIAR)

model. We prove that the HIAR model can be used for calibration but not cali-

brated prediction. We develop a number of methods for improving mixing of the

MCMC algorithm. We explore two extensions of the HCAR model. First the het-

erogeneous HCAR (HHCAR) model, which represents heterogeneity, and second

the continuous HCAR (CHCAR) model, which uses continuous simulation values.

In conclusion, using our Bayesian framework we can replicate the results of less

rigorous approaches, for example generalised likelihood uncertainty estimation

(GLUE), and make probabilistic predictions which are not possible in these less

rigorous approaches. Future work would further develop the likelihood models.
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Chapter 1

Introduction

This introduction sets the scene for the analysis that is carried out in the remaining

chapters, namely the development of a Bayesian framework for the calibration of

flood inundation simulators using an observation of flood extent. We begin with

an assessment of the continuing global and national flood hazard, and the need

for calibrated flood inundation simulators. This is followed by a description of

two methods for flood inundation prediction: the current practice adopted by the

Environment Agency in the UK, and generalised likelihood uncertainty estimation

(GLUE) which has been ubiquitous in recent research. The shortcomings of these

two approaches and their consequences for flood management are used to argue for

a new paradigm for calibration and calibrated prediction. We consider the features

required of our framework, and justify the need for a Bayesian approach and use

of observations of flood extent. At the end of the chapter we give an overview of

the rest of the thesis.

1.1 Flood Hazard Prediction and Uncertainty

The Oxford English Dictionary (1989) defines a flood to be

An overflowing or irruption of a great body of water over land not

usually submerged; an inundation, a deluge.

Examples of this phenomenon are found in confined regions after sudden extreme

rainfall, on coasts during storms and in river basins after sustained heavy rainfall.

The complexity of flood hydraulics and strong dependence on topography make

1



Chapter 1. Introduction

prediction very difficult (Anderson et al., 1996).

According to the World Disasters Report (2001) floods affect on average 140

million people worldwide every year, more than all the other natural hazards com-

bined. Drowning, forceful destruction of property and sediment transport are all

part of the multifaceted flood hazard. The transported sediment may consist of

sewage, pesticides or other chemicals, spreading disease and causing further de-

struction to property. The impact of flooding differs between developed and devel-

oping countries: the financial impact is greater in developed countries where high

monetary value is attached to buildings, but the number of flood related deaths is

higher in developing countries because of the absence of flood management.

In England and Wales four to five million people and 1.9 million homes are

estimated to be at risk from flooding (Harman et al., 2002). The total value of

properties at risk exceeds £200 billion. The average annual economic damage

from flooding and coastal erosion is over £1 billion per year but without any flood

defences is predicted to be over £3.5 billion per year (Halcrow Group Ltd, 2001).

One recent example of flooding occurred on the 16th August 2004 when floods

caused widespread devastation to Boscastle in Cornwall. No lives were lost but

100 homes were affected, vehicles were swept away by walls of water and much

infrastructure was damaged (Living with the risk, booklet).

The Foresight Programme’s Future Flooding report (Foresight, 2004) was com-

missioned by the Office of National Statistics to provide a vision of flood and

coastal erosion risk between 2030 and 2100. Such long term predictions are nec-

essary because decisions made today may have a profound impact on flood risk

in the future. The focus of the report is risk-based decision making, where the

risk of a particular outcome is defined to be the product of its probability and

consequence.

The report begins by examining how flooding and coastal erosion might develop

under the baseline assumption that flood risk management remains unchanged.

Coastal grazing marshes and other similar environmental habitats are threatened,

and by the 2080s the average annual damage from coastal erosion will increase by
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3 to 9 times, although this is still far less than current losses from flooding, and

the number of people at high risk from river or coastal flooding will increase from

the current figure of 1.6 million to between 2.3 and 3.6 million.

The main factors affecting flood risk were identified to be climate change,

through increasing precipitation and sea-level rise; urbanisation and rural land

management by increasing run-off; environmental regulations by limiting main-

tenance of flood defences and flood risk management along rivers, estuaries and

coasts; and growing national wealth by increasing the value of property and assets

at risk.

The Future Flooding report considers 120 responses with respect to their po-

tential for reducing future flood risk. Considering the impact of each of these

responses in terms of future flood risk provides a common approach for comparing

a variety of very different options. Risk analysis means investigating the possible

ways a response could influence the future and attaching probabilities to these

future scenarios (Ministry of Agriculture, Fisheries and Food, 2000). The decision

maker would then select the response which maximises the expected risk reduction

less the expected cost. The cost of a response relates to its environmental, social

and economic sustainability.

Isolated responses were unable to adequately reduce risk and meet the sustain-

ability criteria, although catchment-wide storage, land-use planning and realign-

ing coastal defenses scored highly. Instead an integrated portfolio of responses

was proposed, which was found to reduce the risks of river and coastal flooding

for the worse-case scenario from £20 billion per year down to £2 billion per year

in the 2080s. This figure is still double the present day annual damage. This

integrated response would cost between £22 and £75 billion by 2080 and to meet

the sustainability criteria must be implemented sensitively. The task of flood risk

management is made significantly easier if it is combined with efforts to reduce cli-

mate change. It was found that reducing greenhouse emissions alone could reduce

the annual damage by £6 billion per year by the 2080s (Foresight, 2004).
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The Future Flooding report concludes that it is not enough to maintain current

levels of flood risk, rather it is essential they are reduced. This is due to the

expectations of society and the economic benefits of reducing flood risk which will

be much greater than the costs. The report acknowledges that risk is inherently

uncertain and that we need to reduce uncertainty in our predictions of risk.

The Government’s current strategy for flood and coastal erosion management

in England is outlined in the report “Making space for water” (Department for

Environment, Food and Rural Affairs, 2005). The Government is taking a holis-

tic, risk-driven approach which accounts for all sources of flooding and integrates

flood and coastal risk management with Government policies. The strategy is to

reduce the threat to people and property whilst delivering environmental, social

and economic benefits consistent with the Government’s sustainable development

principles. A key component of the strategy is adaptability to climate change and

to ensure that decisions are increasing risk driven. For the latter of these they iden-

tify that it is essential to include better data on the consequences of flooding. The

Government spent £600 million on flood risk management in 2005-6 but proposed

projects still have to be prioritised and this is accomplished by risk-based decision

making. The Government’s commitment to flood risk management strategies is a

condition of the Association of British Insurer’s commitment to cover most prop-

erties at risk. The “Making space for water” policy falls short of enforcing Flood

Risk Assessment in the planning process, but it will be strongly encouraged. In

2003/4 local planning authorities approved 12% of the planning proposals that

were objected to by the Environment Agency (A better place?, booklet).

The Department for Environment, Food and Rural Affairs (DEFRA) has respon-

sibility for the implementation of the Government’s policy for flood and coastal

defence in England and manages flood emergencies. The Environment Agency

(EA) supervises the implementation of this policy which is the joint responsi-

bility of the operating authorities: the EA, Internal Drainage Boards and local

authorities. The EA is also responsible for flood forecasting and warning, and in-

creasing public awareness of flood risk. DEFRA has produced a series of Flood and
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Coastal Defence Project Appraisal Guidance reports for the operating authorities.

The fourth of these guides (Ministry of Agriculture, Fisheries and Food, 2000) is a

guide on approaches to risk and once again highlights the Government’s strategy

of risk-based decision making.

One way the flood risk can be represented is as a map of the probability of flood

inundation for a particular design event, for example the 1 in 100 years level flood

(i.e. a flood with a probability of 0.01 of occurring in any given year). For most

rivers it is unlikely a 1 in 100 years level flood will have been observed within the

history of current monitoring practice, so direct statistical analysis of flood extent

is not possible. However, in England and Wales gauging stations continuously

measure river elevation over time which can be used as input conditions for a

physical or numerical simulator to predict flood extent (Hall and Anderson, 2002).

Flood modelling is particularly challenging because the low gradients indicative

of floodplains mean the flood extent is very sensitive to small perturbations in

water surface elevation, so accurate simulators and accurate topographic data are

required.

A number of flood inundation simulators have been developed, each with a dif-

ferent emphasis on process representation, computational efficiency and inclusion

of high resolution topographic data. The best simulator for a particular applica-

tion depends on the type of flood event and the data available for prediction, no

simulator is optimal for all events. Most simulators if run twice with the same

input will produce the same output, we say they are deterministic. Some inputs

to flood inundation simulators are unknown and must be estimated, we call them

calibration inputs. For a given calibration input value the simulator output is cer-

tain, but we are uncertain about how the output relates to reality. By comparing

the output of the simulator, run at various values of the calibration inputs, to the

observed data, we learn how the values of the calibration inputs relate to how well

the simulator output represents the observed data, this is called calibration.

The calibration inputs are assumed to be stationary between the event we cali-

brate on and the event we want to predict. Even so, the values of the calibration
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inputs which correspond to the simulation that is closest to the observed data

will differ between events (Romanowicz and Beven, 2003). This is due in part to

the observation error but largely because the simulator does not reproduce reality

perfectly. The inability of the simulator to reproduce reality is called the sim-

ulator inadequacy. Therefore the calibration inputs, although seemingly physical

quantities, must take account of unrepresented processes which may differ between

events. For the calibration inputs to be stationary the processes they explicitly

and implicitly account for must be stationary between events.

1.2 Current Practice in Flood Inundation Pre-

diction

The 1991 Water Resources Act required the EA to provide flood maps showing

estimates of 1 in 100 and 1 in 1000 year level floods which are now available on

their website (Fleming, 2002). Figure 1.1 shows a flood map for the River Thames

near Buscot. Flood maps raise public awareness by providing localised predictions

of flood risk. However, where observations of large floods are unavailable, the flood

maps are typically obtained from a single run of a deterministic simulator where

the values of the calibration inputs driving the simulator are chosen by calibration

on a more probable event (Bates et al., 1998) or assigned on the basis of judgement.

The optimum values of the calibration inputs will not in general be the same for

the event we calibrate on and the event we wish to predict. Furthermore, the

single run of the simulator is presented with no measure of how close this may be

to reality.

Flood maps could be improved by taking the weighted average of the simulator

outputs when different calibration inputs are used, where the weights are deter-

mined by calibration (Aronica et al., 2002; Bates et al., 2004). At the same time

we can quantify the inadequacy of the simulator in predicting real flood events.

In the absence of formal statistical guidelines for calibration of flood inunda-

tion simulators using observations of flood extent, many non-probabilistic methods

have been developed. Of these the generalised likelihood uncertainty estimation
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Figure 1.1: Flood map for the River Thames near Buscot. The predicted inundated
area in the 1 in 100 and 1 in 1000 year flood events are dark blue and light blue
respectively.

(GLUE) method introduced by Beven and Binley (1992) has attracted a lot of

interest, and there is now a considerable body of work developing or using the

GLUE methodology (Aronica et al., 1998, 2002; Blazkova et al., 2002). For the

calibration event the simulator is run at many values of the calibration inputs, the

resulting outputs are compared to the observed data by means of a generalised

likelihood which is a function chosen subjectively to measure goodness-of-fit. For

the prediction event the simulator is run at the same values of the calibration in-

puts. Routinely a sample from a uniform distribution with a user-defined range is

used for the values of the calibration inputs at which the simulator is run. This is a

deficiency of GLUE because this will not, in general, adequately capture the user’s

subjective knowledge about the values of the calibration inputs. The weighted

mean, where the weights are the generalised likelihood values from calibration,

is claimed to provide an estimate of the probability of flooding for each pixel.

Although there are some similarities between GLUE and Bayesian statistics, the

relaxation of the conditions a likelihood function must satisfy, the so-called gener-

alised likelihood, means probabilistic inference is not possible using this method.

This holds for any method that fails to satisfy the conditions of probability and
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therefore we propose that it is necessary to develop a probabilistic approach to

calibration. A probabilistic method is preferable because probability is coherent.

1.3 The Need for an Alternative Calibration

Methodology

Flood maps can be helpful in many areas of flood management. For a particular

region many flood defence measures may be possible, and flood maps depicting

the impact of each defence measure will help in the identification of the optimum.

Flood maps can be used to assess the flood risk associated with new construction

for planning applications, for calculating insurance premiums for houses in high

risk areas, and to make public warnings more localised. However, for a flood map to

be useful it must provide reliable information. It is impossible to be certain about

the flood extent in a future event, there are many uncertainties in the modelling

process that should be quantified in our prediction. Presenting a single simulator

output as a certain flood map could result in non-optimal choice of flood defence,

incorrect planning permission decisions and insurance premiums, and poor flood

warnings. The ramification will be a downturn in public opinion of flood maps,

which will be difficult to rectify even when flood maps improve. It is therefore

very important that a statistical method is developed to produce accurate maps

of the probability of flooding.

Romanowicz and Beven (2003) have shown that, as a consequence of the errors

that arise in predicting flood inundation and errors in observation, different values

of the calibration inputs may lead to equally good results in the calibration event

but give different results for the prediction event, in particular the optimum value

is not the same. The EA flood maps are typically the result of a single run of a

flood inundation simulator, so the uncertainty about the value of the calibration

inputs and the simulator inadequacy is not quantified. The flood maps produced

using the GLUE approach attempt to account for uncertainty about the value

of the calibration inputs by taking the weighted average of a number of simulator

runs. The probabilities presented are not true probabilities because the generalised
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likelihood used is not a likelihood in a formal sense. Even if a proper likelihood is

used, the flood maps show the probability the flood inundation simulator predicts

an area is inundated, not the probability it is actually inundated in a future event

(see Section 4.2.3). Claiming that the GLUE flood maps provide the probability of

flooding for a future event is equivalent to saying there is no simulator inadequacy.

We must account for simulator inadequacy, and this should be done within a formal

statistical calibration framework.

Although river stage measurements at regular intervals along the channel may be

used as calibration data (see Krzysztofowicz, 2002), we ultimately want to predict

flood extent and would therefore need to work out how inadequacy in predicting

river stage translates to inadequacy in predicting flood extent. Ideally we would

have spatio-temporal data to calibrate flood inundation simulators with, because

we want to predict the spatial evolution of flood extent over time. However, there

is no such spatio-temporal data currently available, whereas spatial data of flood

extent is becoming more readily available because of improvements in segmentation

algorithms (Horritt, 1999; Horritt et al., 2001).

The next step is to develop a statistical approach to calibration using obser-

vations of flood extent. A future development would be to combine spatial and

time-series data calibration methods, so calibration can be performed on multiple

sources of data.

1.4 Required Features of a New Calibration

Methodology

An optimal framework for uncertainty handling in flood inundation modelling

would be strictly probabilistic. The subjective choice of goodness-of-fit measures

allowed in less rigorous approaches results in predictions of uncertainty that cannot

be interpreted as probabilities. However, it may still be important to be able to

incorporate subjective information such as expert beliefs and this can be done in

a rigorous way using Bayesian statistics.
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The calibration method should account for all sources of uncertainty, implic-

itly or explicitly, to provide reliable probability flood maps. Unfortunately the

rarity of multiple observations of flood extent means we will not be able to val-

idate our probabilistic predictions to test how reliable they are. By identifying

the inadequacy of the simulator in representing the real flood extent the areas

of the simulator in need of improvement may be identified. The effect of uncer-

tainty about the calibration inputs and the level of simulator inadequacy can be

investigated.

The greatest difficulty in developing a calibration method using observations of

flood extent is defining an appropriate likelihood, i.e. a statistical model for the

observed data given a simulator output. Indeed, this is the very reason that simple

non-probabilistic methods have been so popular. The majority of this thesis will be

concerned with identifying an appropriate likelihood model, and examining what

features, including spatial dependence, blur and heterogeneity, it is necessary to

represent.

1.5 Why is this the Next Logical Step?

Interest in environmental modelling has grown as a consequence of concern about

the effects of climate change on the frequency of natural hazards. In recognition

of the growing interest in environmental statistics the Royal Statistical Society

formed the Environmental Statistics Study Group in 1996. Advances in comput-

ing mean many types of numerical simulator are now feasible, but there is not an

equal advance in data available to validate the predictions, so it is essential that

uncertainty in simulator output is quantified. The final report of the Institution

of Civil Engineers’ presidential commission on floods identified as vital improved

procedures for quantifying the uncertainty in flood inundation simulators. The

increasing acceptance of non-probabilistic techniques should be challenged by the

statistics community because statistical approaches have not yet been exhausted.

Although there may be tasks to which other non-probabilistic methods are bet-

ter suited, it is the opinion of this thesis that a formal statistical framework for
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calibration using observations of flood extent is possible, and that it is preferable.

Ideally the framework we develop for calibration will be applicable to a wide

range of environmental applications. Flood inundation simulators are a good case

to consider because they contain the key ingredients of environmental systems in a

comparatively simple way. Simulators typically have very few calibration inputs,

the fluid dynamics is well understood, and because the process of interest is on

the surface, data can be obtained for calibration.

Until recently flood inundation modelling had been a data poor problem but

improvements in remote sensing technology and algorithms for the extraction of

flood extent mean data for the calibration of simulators is becoming more readily

available (Bates, 2004). Flood extent is an important quantity for flood manage-

ment and so it is sensible to construct a method for calibration on observations

of flood extent. Also the development of a likelihood for the observed flood ex-

tent given the simulator output is mathematically interesting. Finally, advances

in computing should be acknowledged as making the current research possible.

1.6 Thesis Overview

This chapter began by describing the hazard posed by flooding both globally and

in England and Wales. In particular flood risk in England and Wales is predicted

to increase over the next century and climate change has been identified as a

powerful driver (Foresight, 2004). The non-probabilistic methods popular in the

flood modelling research community were argued against on the grounds that the

relaxation of probabilistic conditions may lead to arbitrary predictions. A Bayesian

approach is favoured because it allows the incorporation of subjective expert beliefs

and integration out of all uncertainties.

In Chapter 2 we present the hydrological background. We begin with hydraulic

modelling and introduce the storage cell code LISFLOOD-FP, then the input and

observed data appropriate to flood inundation modelling is described. At the end

of the chapter we provide the details of the Buscot dataset that is used throughout

the thesis.
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In Chapter 3 we present the statistical background. We are going to develop

a Bayesian framework so we give an introduction to Bayesian statistics, Markov

chain Monte Carlo (MCMC), and directed acyclic graphs (DAGs).

In Chapter 4 we review the problem of handling uncertainty in computer codes,

with emphasis on flood inundation simulators. We use the generic classification

of uncertainties from Kennedy and O’Hagan (2001) to classify the uncertainties

in hydraulic modelling. Then we describe some current methods for handling

uncertainty. At the end of the chapter we give an example of GLUE applied to

the Buscot dataset.

Chapters 2, 3 and 4 provide the background for the work in the rest of the thesis.

If the reader feels they do not require this background information they may go

directly to Chapter 5, where the original work begins.

Our Bayesian framework for handling uncertainty in flood inundation simulators

is described in Chapter 5. We illustrate our framework using a DAG. To demon-

strate the framework we assume a binary channel (BC) model for the likelihood.

As will become clear this simple model is unrealistic but allows the probability of

flooding in a future event to be calculated analytically. In applying the framework

to the Buscot dataset we observe the inadequacy of the BC model as a likelihood

model. In Chapters 6, 7 and 8 we investigate properties of alternative likelihood

models.

In Chapter 6 we show that the Ising model is the only model for binary images

with interactions between nearest neighbours and homogeneous parameters. Then

we extend the Ising model to regression on a binary image (the simulator output).

The normalising constant is notoriously difficult to calculate, so we review impor-

tance sampling, bridge sampling and path sampling methods for approximation.

Then we look at novel applications of path sampling to paths between model pa-

rameterisations and between different binary images. We also extend the idea of

path sampling to area sampling by integrating over areas rather than paths. This

extension suggests an additive approximation if covariance is ignored. We consider

a number of approximations in order to estimate the normalising constant more

12



1.6. Thesis Overview

efficiently. Unfortunately, we are unable to identify a method which is sufficiently

accurate and efficient, so the Ising model cannot be used as the likelihood.

In Chapter 7 we extend the BC model to represent heterogeneity and call this the

heterogeneous binary channel (HBC) model. By extending the BC model we aim

to develop a practical likelihood model. We show how calibration and calibrated

prediction can be done with this model and propose an MCMC algorithm to

obtain an approximate sample from the posterior. We explore the effects of forcing

regression to be positive by constructing a similar model for which this is the case,

the positive heterogeneous binary channel (PHBC) model. The properties of both

models are shown using a one-dimensional toy dataset. We then apply the HBC

model to the Buscot dataset. For many values of the HBC model parameters

the Markov chain convergence is very slow, we show how within-model sampling

(WMS) might be used to improve this. In the HBC model there is no explicit link

between the parameters corresponding to negative and positive simulation values.

In Chapter 8 we consider an alternative model for which this link exists.

Chapter 8 begins with a description of conditional autoregressive (CAR) mod-

els. We extend the hidden CAR (HCAR) model of Weir and Pettitt (1999) to

regression on a binary image and describe how to calibrate and make calibrated

predictions using this model as the likelihood. We review block-circulant matrices

and their relevance in making the method practical, and an MCMC algorithm

is proposed. The method is applied to the Buscot dataset and then we suggest

various ways in which the mixing of the Markov chain can be improved. We find

the limit of the HCAR model as the parameters approach a particular boundary

of the parameter space, we call this the hidden intrinsic autoregressive (HIAR)

model. We show that calibration is possible using this model but not calibrated

prediction. We look at two extensions of the HCAR model. First, the hetero-

geneous HCAR (HHCAR) model, which represents heterogeneity, and second the

continuous HCAR (CHCAR) model, which uses continuous simulation values.

Finally, in Chapter 9 we present conclusions about our Bayesian framework and

the likelihood models we developed, and suggest future work in these areas.
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Hydrological Background

We begin this chapter with a review of hydraulic modelling. Then we describe

the data required to run a flood inundation simulator and the data required to

calibrate one. Finally we give an overview of the Buscot dataset that will be used

many times throughout the thesis.

2.1 Hydraulic Modelling

Starting with a summary of flow processes we describe how flow may be rep-

resented using the equations of motion with suitable boundary conditions. We

classify numerical simulators according to the dimensionality of the flow processes

represented, and justify the use of LISFLOOD-FP for the examples in this thesis.

2.1.1 Flow Processes in Floods

The regular flow of a river defines the channel that is carved out of the landscape.

When extreme flows occur the river level may exceed that of the river bank causing

the river to spill onto the floodplain (Knight and Shiono, 1996). A flood is defined

as a large, low amplitude wave flowing over complex geometry (Bates et al., 2005).

The flow conveyance in flood may be very different from normal flow as new

pathways become available (Bates and De Roo, 2000). The size of the flood wave

is important in the selection of an appropriate simulator as in larger river basins the

length may exceed 103 km, have an amplitude of around 10 m and take months to

travel through the system (Bates et al., 2005). As the wave propagates downstream
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it slows and flattens out (attenuates) due to friction.

We now present a brief overview of flow processes in compound channels. During

normal flow, shear layers form between the main flow and slower moving regions

called dead zones (Hankin et al., 2001). The primary velocity field is the velocity

profile on cross-sections perpendicular to the main flow. Turbulence and inter-

actions with dead zones cause circulatory motions in the primary velocity field

called secondary circulations. Turbulent eddies are generally created at the scale

of the flow geometry, each eddy breaks down into a number of smaller eddies and

in doing so dissipates some kinetic energy as heat. This process is repeated until

kinetic energy is completely dissipated by the smallest eddies at the Kolmogorov

length scale which may be 10−2 mm.

During a flood, vortices with vertically aligned axes transfer momentum between

the slow floodplain flow and fast channel flow (Knight and Shiono, 1996), and

for meandering channels, water that spills onto the floodplain may travel over

the floodplain and only return to the channel further down the reach (Sellin and

Willets, 1996). The impact of these processes is greatest when the flow on the

floodplain is shallow, as the depth increases the channel and topography begin to

act as a single channel unit (Bates et al., 2005; Knight and Shiono, 1996). The

floodplain flow away from the channel is characterised by relatively rapid horizontal

fluctuation, it is imperative that this behaviour is captured in any flood inundation

simulator. Interaction with vegetation becomes more important for overbank flow

particularly when the floodplain is used as an additional means of conveyance.

Processes resulting from interaction with the catchment are generally ignored

but occasionally it may be necessary to account for some of them, including evapo-

transpiration losses, direct precipitation and bank-storage effects (Bates et al.,

2005).

All of the processes described in this section can be represented using the equa-

tions of motion, called the Navier-Stokes equations.

15



Chapter 2. Hydrological Background

2.1.2 The Equations of Motion

Fluids are discrete, they are composed of a number of molecules such that at any

point they are either there or not (Paterson, 1997). For example the density of a

fluid takes a large positive value where a molecule is but is elsewhere zero, it is a

discontinuous function. It is very difficult to work with discontinuous functions,

for which even differentiation is not possible. Therefore we are forced to make our

first assumption, that the fluid is a continuum. This widely used assumption is a

good approximation in most cases, however an example where it is not applicable

is shock waves, where there are discontinuities in the fluid.

The equations of motion are derived from the laws of conservation of mass and

momentum that state that these quantities cannot be created or destroyed. We

will show the equations of motion by applying these laws to a small fluid parcel

with volume V and surface S.

By the law of conservation of mass the rate of increase of mass in the fluid parcel

V must be equal to the rate mass enters V from the outside (Julien, 2002).
∫

V

∂ρ

∂t
dV = −

∫

S

ρv · n dS (2.1)

where ρ is the density, v is the fluid velocity and n is the outward pointing unit

normal of the surface S. The surface integral can be replaced by a volume integral

using the divergence theorem, on rearranging we find
∫

V

∂ρ

∂t
+ ∇ · (ρv) dV = 0.

Furthermore V is arbitrary, so by the Dubois-Reymond lemma (Paterson, 1997)

the integrand must equate to zero,

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.2)

which is the continuity equation. The differential of the density with respect to time

is only possible because of the continuum assumption. The continuity equation

provides a link between the velocity components.

By the law of conservation of momentum the rate of increase in momentum in

a fluid parcel V is the sum of three components: the rate of momentum inflow
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2.1. Hydraulic Modelling

through S, the forces acting inside V , and the forces acting on S (Paterson, 1997).

For the ith component

d

dt

∫

V

ρvi dV = −
∫

S

ρviv · n dS +

∫

V

Fi dV +

∫

S

σi1n1 + σi2n2 + σi3n3 dS

where Fi is the ith component of the body force per unit volume and σij is the ith

component of the force per unit area for an area with normal in the jth direction.

The tangential stresses are shear stresses so we write σij = τij for i 6= j. Also

the normal stresses are the sum of pressure effects and deformation shear stresses

σii = −p + τii (Julien, 2002).

Converting the surface integrals to volume integrals using the divergence theo-

rem and equating the integrand to zero by the Dubois-Reymond lemma, we find

∂

∂t
(ρvi) +

3∑

j=1

∂

∂xj

(ρvivj) = Fi −
∂p

∂xi

+
3∑

j=1

∂τij
∂xj

.

This is the equation of motion. The left hand side can be rearranged using the

continuity equation (2.2) to show that it is just the density multiplied by the

acceleration of a particle following the fluid (Paterson, 1997),

ρ
Dvi

Dt
= ρ

∂vi

∂t
+ ρv · ∇vi.

2.1.3 Conditions for Flood Modelling

The equations of motion can be applied to a wide range of applications, from

the ripples in a glass of milk to ocean waves. To make use of the equations in a

particular application boundary conditions must be specified.

For most liquids it is appropriate to assume that the density does not change

following the fluid, Dρ/Dt = 0, we say the fluid is incompressible. In this case the

continuity equation (2.2) becomes

∇ · v = 0. (2.3)

The shearing stresses τij are the product of the rate at which the layers are sheared,

∂vi/∂xj +∂vj/∂xi, and the strength of the bonds between the layers, µ, called the

coefficient of viscosity. The equation of motion becomes

ρ
Dv

Dt
= F −∇p+ µ∇2v (2.4)
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Chapter 2. Hydrological Background

which is the Navier-Stokes equation for an incompressible fluid.

The bed and free water surface provide two boundary conditions for river basin

applications. The bed is assumed to be solid so the normal velocity is zero and

we also assume that water molecules next to the bed “stick” to this surface, the

so-called no-slip condition, so horizontal velocities are zero. Water particles are

unable to cross the free water surface so the normal velocity here is also zero.

For shallow flows on floodplains with high relative roughness, friction is likely to

be the dominant component of F . For large scale floodplain flows other effects may

need to be accounted for: Coriolis effects may be included in the force per volume

vector F ; we may be unable to assume that density is constant over horizontal

translation; we may need to account for wind shear stresses at the water surface;

and atmospheric pressure may vary over the water surface (Lane, 1998).

We have now presented the equations of motion and the boundary conditions

required for flood modelling. However, to solve these equations numerically is

computationally infeasible, it would require a discretization of the flow with cell

spacing significantly shorter than the length of the smallest eddies (typically about

10−2 mm) and a time step that is shorter than the lifespan of these smallest eddies.

In the next section we will discuss the types of numerical simulator that have been

developed and the various assumptions that they encode.

2.1.4 Reynolds Averaging

In most cases it is unnecessary to know instantaneous velocities, and we can simply

model their effect on the mean flow. Reynolds averaging splits the instantaneous

velocity, vi, into time averaged mean, vi, and fluctuation, v′i, such that the time

average of v′i is zero. On substituting vi = vi + v′i into the equations of motion and

time averaging the continuity equation (2.3) becomes

∇ · v = 0. (2.5)

and the ith component of the Navier-Stokes equation (2.4) becomes

∂vi

∂t
+

3∑

j=1

vj
∂vi

∂xj

=
Fi

ρ
− 1

ρ

∂p

∂xi

+
1

ρ

3∑

j=1

∂

∂xj

(
µ
∂vi

∂xj

− ρv′iv
′
j

)
(2.6)
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2.1. Hydraulic Modelling

called the Reynolds-averaged Navier-Stokes equation. The Reynolds shear stresses

ρv′iv
′
j measure the retardation on the mean flow due to turbulence. There are

now more unknowns than equations, to resolve this dilemma we formulate models

for the Reynolds shear stresses. Many of these models rely on the Boussinesq

assumption

ρv′iv
′
j = νij

(
∂vi

∂xj

+
∂vj

∂xi

)

where the eddy viscosity coefficient, νij, is typically much larger that the laminar

counterpart µ (Rodi, 1980). The eddy viscosity must itself be modelled: zero-

equation models implicitly assume turbulence is dissipated where it is generated;

one-equation models account for transport of the turbulent velocity scale; and two-

equation models in addition account for transport of the turbulent length scale

(Rodi, 1980). Alternatively, the Reynolds shear stresses can be calculated directly

from their transport equations, which does not rely on the Boussinesq assumption,

but as yet this has only been applied to steady flows through channels of simple

geometry.

2.1.5 Numerical Simulators

Reality cannot be perfectly revealed by a finite number of processes using a finite

sample of data, rather “all models are wrong, but some are useful” Box (1976).

Because it is impossible to apply the Navier-Stokes equations directly, it is the

task of the modeller to ascertain which processes must be included and which may

be neglected. A simulator is judged by its ability to fulfil the job for which it

was designed. Adopting the simulator classification from Pender (2006) we now

present a summary of the various flood inundation simulators.

Three-Dimensional Simulators (3D)

A three-dimensional solution to the Navier-Stokes (or Reynolds averaged Navier-

Stokes) equations is required when three-dimensional processes dominate the be-

haviour of the feature we want to model. Examples include sediment transport,

flow-vegetation interaction and the interaction at the channel-floodplain interface

(Bates et al., 2005). The sophistication of the solution depends on the grid scale
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Class Description Application Examples Inputs Outputs Computation
Time

0D Direct interpola-
tion of gauged el-
evations

Broad-scale and benchmark ArcGIS,
Delta mapper

DEM, upstream
and downstream
water levels

Flood extent and
depths from inter-
secting planar water
surface with DEM

Seconds

1D Solution of the
one-dimensional
Saint Venant
equations

Reaches of the order of 10s
or 100s of km depending on
catchment size

HEC-RAS, In-
foworks RS
(ISIS), MIKE 11

Surveyed cross-
sections, up-
stream discharge
hydrographs and
downstream stage
hydrographs

Water depth and av-
erage velocity at each
cross-section, inunda-
tion extent by inter-
secting predicted wa-
ter depths with DEM,
and downstream out-
flow hydrograph

Minutes

1D+ 1D plus a stor-
age cell approach
to the simulation
of floodplain flow

Reaches of the order of 10s
to 100s of km depending on
catchment size, also broad-
scale if used with sparse
cross-section data

HEC-RAS, In-
foworks RS
(ISIS), MIKE 11

As for 1D models As for 1D models Minutes to
hours

2D- 2D minus the law
of conservation
of momentum
for the floodplain
flow

Broad-scale modelling or
urban inundation depend-
ing on cell dimensions

LISFLOOD-FP,
JFLOW

DEM, upstream
discharge hy-
drographs and
downstream stage
hydrographs

Inundation extent,
water depths and
downstream outflow
hydrograph

Hours

Table 2.1: Classification of flood inundation simulators. Based on Table 3 from Pender (2006). Zero-dimensional to two-dimensional
minus simulators.
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Class Description Application Examples Inputs Outputs Computation
Time

2D Solution of the
two-dimensional
shallow wave
equations

Reaches of the order of 10s
km, also broad-scale if ap-
plied with very course grids

TUFLOW,
MIKE 21 and
TELEMAC

DEM, upstream
discharge hy-
drographs and
downstream stage
hydrographs

Inundation ex-
tent, water
depths, depth-
averaged ve-
locities at each
computational
node, and down-
stream outflow
hydrograph

Hours to days

2D+ 2D plus a solution
for vertical veloci-
ties using continu-
ity only

Coastal modelling applica-
tions where 3D velocity pro-
files are important, also ap-
plied to reach scale river
modelling problems in re-
search

TELEMAC 3D DEM, upstream
discharge hy-
drographs, inlet
velocity dis-
tribution, and
downstream stage
hydrographs

Inundation ex-
tent, water
depths, veloc-
ities for each
computational
cell, and down-
stream outflow
hydrograph

Days

3D Solution of the
three-dimensional
Reynolds av-
eraged Navier
Stokes equations

Local predictions of three-
dimensional velocity fields
in main channels and flood-
plains

CFX, FLUENT
and PHEONIX

DEM, upstream
discharge hydro-
graphs, inlet ve-
locity, turbulent
kinetic energy
distribution, and
downstream stage
hydrographs

Inundation ex-
tent, water
depths, velocities
and turbulent
kinetic energy for
each computa-
tional cell, and
downstream out-
flow hydrograph

Days

Table 2.2: Classification of flood inundation simulators. Based on Table 3 from Pender (2006). Two-dimensional to three-
dimensional simulators.
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Chapter 2. Hydrological Background

and the turbulence closure used. This turbulence closure ranges from large eddy

simulation (LES) to depth-averaged RANS equations adopting the Boussinesq

assumption with a zero-equation model for the eddy viscosity coefficient. All

solutions are implemented using a numerical tool such as finite volumes, finite

differences or finite elements. The solution sophistication and domain size and

discretization determine the computational cost; a modeller must balance these

factors with their computational budget.

Stoesser et al. (2003) successfully applied a three-dimensional solution of the

RANS equations, adopting the Boussinesq assumption with a two-equation model

for the eddy viscosity coefficient, to a tangible compound channel flow. However,

more complex solutions such as LES have only been applied to channels with

regular geometry (Thomas and Williams, 1995).

Examples of three-dimensional codes are CFX, FLUENT and PHEONIX (Pen-

der, 2006).

Two-Dimensional Plus Simulators (2D+)

A shallow water application is one in which the horizontal scale is at least 10 times

larger than the vertical scale, in this case we may assume that the pressure gradient

in the vertical direction is balanced by gravity, we say we are in hydrostatic equi-

librium. The vertical component of the Navier-Stokes equations (2.4) is replaced

by the hydrostatic distribution
∂p

∂z
= −ρg.

If the density is constant then the hydrostatic distribution implies the pressure

is linear in z, so the horizontal pressure gradients ∂p/∂x and ∂p/∂y, that ap-

pear in the first and second components of the Navier-Stokes equations (2.4), are

independent of z. Therefore horizontal flow is independent of height and (by in-

compressibility) the vertical velocity is linear in depth.

Although strictly three-dimensional, codes based on the Navier-Stokes equations

with hydrostatic pressure distribution are referred to as 2D+ codes by Pender

(2006) because the vertical velocities are found from continuity only.

One example of a two-dimensional plus code is TELEMAC 3D.
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2.1. Hydraulic Modelling

Two-Dimensional Simulators (2D)

Depending on the feature we want to reproduce it may be unnecessary to employ

three-dimensional codes which can be computationally expensive. In shallow wa-

ter flows the horizontal variation in velocities is much greater than the vertical

variation, suggesting that depth averaged velocities may be adequate.

The two most common two-dimensional approaches are derived by integrating

the RANS equations (2.5) and (2.6) over depth: the Saint Venant equations assume

a hydrostatic pressure distribution and the Boussinesq equations do not (Hervouet

and Van Haren, 1996). The Saint Venant continuity and ith momentum equations

are

∂h

∂t
+ vd · ∇h+ h∇ · vd = 0

and

∂vd

∂t
+ vd · ∇vd,i = −g ∂h

∂xi
− g

∂zb

∂xi
+ ∇ · (ν∇vd,i) + Si

where vd = (vd,1, vd,2) are the depth averaged velocities, zb is the bed elevation, h

is the water depth, and S1 and S2 are the source terms.

Codes based on the Saint Venant equations and Boussinesq equations are the

two-dimensional equivalents of two-dimensional plus and three-dimensional codes

respectively. The equations are solved numerically using a discretization of the

flow and employing a turbulence scheme for the eddy viscosity coefficient ν (see

Bates et al., 2005, for details).

Examples of two-dimensional codes are TUFLOW, MIKE 21, TELEMAC and

DIVAST (Pender, 2006).

One-Dimensional Simulators (1D)

When we are only interested in the attenuation and translation of the flood wave

the dominant variation is in the streamwise direction, so cross-stream and vertical

variations may be ignored. This assumption is valid for floodplains that are less

than three times wider than the main channel (Pender, 2006).

The one-dimensional Saint Venant equations are derived by applying the laws
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Chapter 2. Hydrological Background

of conservation of mass and momentum to two cross-sections δx apart,

∂Q

∂x
+
∂A

∂t
= q (2.7)

and
∂Q

∂t
+

∂

∂x

(
Q2

A

)
+ gA

(
∂h

∂x
+ Sf − Sb

)
= 0 (2.8)

where A is the cross-section area, Q is the flow discharge, Sf and Sb are the friction

slope and bed slope respectively, and q is the lateral flow per unit length. To solve

these equations the river is represented as a number of irregularly spaced cross-

sections. All flow is in the streamwise direction in one-dimensional simulators,

but by splitting the cross-section into a series of panels and then modelling the

shear between these panels, some cross-sectional conveyance can be accounted for

(Knight and Shiono, 1996).

Further simplifications of the Saint Venant equations are possible by ignoring

certain terms in the momentum equation (2.8). The diffusive wave model assumes

that inertia can be neglected so the momentum equation becomes ∂h
∂x

+Sf −Sb = 0,

but there is little computational gain in not computing the inertia terms. In

the kinematic wave model the momentum equation becomes Sf − Sb = 0, which

equates momentum of an unsteady flow to that of a steady uniform flow, with the

consequence that the flood wave is not attenuated in channels of uniform geometry

and disturbances cannot affect upstream flow (Bates, 2005).

Examples of one-dimensional codes are MIKE 11, HEC-RAS and Infoworks RS

(ISIS) (Pender, 2006).

One-Dimensional Plus and Two-Dimensional Minus Simulators
(1D+/2D-)

One-dimensional simulators cannot represent lateral flow or account for variations

in topography between the subjectively chosen cross-sections. Although two- and

three-dimensional simulators overcome these issues they do so at great computa-

tional expense (Bates and De Roo, 2000). For this reason hybrid simulators have

been developed which treat the channel flow as one-dimensional and the floodplain

flow as two-dimensional.
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2.1. Hydraulic Modelling

The channel flow is normally represented using the one-dimensional Saint Venant

equations and the floodplain flow using a two-dimensional storage cell method

(Cunge et al., 1980). Flows between the storage cells and the channel or other

storage cells are defined by weir flow based discharge relationships (Pender, 2006).

In one-dimensional plus (1D+) simulators the floodplain is split into a number

of user defined polygonal storage cells with horizontal water levels. Examples are

MIKE 11, HEC-RAS and Infoworks (RS) (Pender, 2006).

To avoid the need to subjectively define storage cells and to make use of high

resolution topographic data (see Section 2.2.3) two-dimensional minus simulators

have been developed in which the floodplain is discretized as a grid of square cells.

An example is LISFLOOD-FP (Bates and De Roo, 2000).

In LISFLOOD-FP the channel flow is represented using a kinematic or diffusive

wave approximation to the Saint Venant equations, see Equations (2.7) and (2.8),

with friction slope

Sf =
n2

cP
4/3Q2

A10/3

where nc is Manning’s friction coefficient for the channel and P is the wetted

perimeter. If the channel is assumed to be wide and shallow the wetted perimeter

can be approximated by the channel width.

The floodplain flows are described in terms of continuity and momentum equa-

tions, discretized over a grid of square cells (Bates et al., 2004). Let Nij =

{(i− 1, j), (i+ 1, j), (i, j − 1), (i, j + 1)} be the set of neighbours of cell (i, j) and

suppose (k, l) ∈ Nij, then the flow from (i, j) to (k, l) is defined to be proportional

to the difference between the free surface heights

Q(i,j),(k,l) = h
5/3
f d1/2n−1

f (hi,j − hk,l)/|hi,j − hk,l|1/2 (2.9)

where hi,j is the height of the free water surface, the flow depth hf is the difference

between the highest free water surface in the two cells and the highest bed eleva-

tion, nf is Manning’s friction coefficient for the floodplain, d is the cell dimension,

and Q(i,j),(k,l) describes the volumetric flow rate between cells. The water depths
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are calculated using the continuity equation

∂hi,j

∂t
= − 1

d2

∑

(k,l)∈Nij

Q(i,j),(k,l) (2.10)

The flows between floodplain and channel cells are also calculated using equa-

tion (2.9), then the channel is updated by equating this flow with q in equation

(2.7), and the floodplain is updated using equation (2.10) (Bates et al., 2005). An

important difference between two-dimensional minus and two-dimensional simula-

tors is that in two-dimensional minus simulators momentum transfer between the

channel and the floodplain is not represented.

There are two approaches to discretizing the channel (Bates et al., 2004). If the

channel width is approximately equal to the grid cell size then we can define a

series of cells to contain the channel and a bankfull depth for each of these cells.

When bankfull depth is exceeded the flow between the channel and floodplain is

calculated as described above. If the channel width is small compared with the grid

cell size this scheme will neglect the potential for storage adjacent to the channel

but within the channel cell. In this case Horritt and Bates (2001) propose an

alternative scheme called the near channel floodplain storage (NCFS) model. The

channel no longer occupies any floodplain cells but now specifies an additional

pathway between the cells it passes through. Two water depths are associated

with the floodplain pixels the channel passes through. Flow between the channel

and floodplain pixels lying on the channel is handled using a Manning type flow

equation.

To solve the equations numerically a time step is specified. If the time step is

too long the solution oscillates, so to prevent this a flow limiter is imposed

Q⋆
(i,j),(k,l) =





Q(i,j),(k,l) if |Q(i,j),(k,l)| < |hi,j − hk,l|d2/(4∆t)

(hi,j − hk,l)d
2/(4∆t) otherwise.

However, when it is used the Manning’s friction coefficient n is ignored and the

grid size and time step become important. Hunter et al. (2005) resolve this issue

by calculating the optimum time step at each iteration, but throughout this thesis

this adaptive time step is not used. Werner and Lambert (in press) have shown
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that LISFLOOD-FP underpredicts inundation extent, flood depth, wave volume

and travel time when used without first calibrating. However, after calibration

LISFLOOD-FP has been shown to be as good as or better than two-dimensional

simulators (Horritt and Bates, 2002).

Zero-Dimensional Simulators (0D)

When the flood wave is long compared to the reach, so within the reach it is rel-

atively flat, we may fit a plane to gauged water surface elevations, and compare

this to the topography to obtain flood depths (Werner, 2001). The success of this

method depends on the number of gauges and the accuracy of the topography.

When many gauges are present we can use a series of planes to improve the sur-

face approximation. Although this method does not conserve mass and can show

hydraulically unconnected regions as flooded, its simplicity means it is often used

as a benchmark for other simulators. Examples are ArcGIS and Delta mapper

(Pender, 2006).

2.1.6 Simulator Choice

The flood inundation simulator used to demonstrate the calibration methodology

developed in this thesis should: be capable of representing floodplain flow be-

cause we want to calibrate on an observation of flood extent; be computationally

inexpensive because we want to generate a large ensemble of results; have few cal-

ibration parameters to minimise the size of the ensemble required; be convenient

because the methodology we develop will be generic so the simulator adopted is

not critical.

Numerical solutions using raster grids are computationally cheaper than those

using unstructured meshes, but a resolution capable of representing the channel

processes effectively will be too fine on the floodplain. The natural progression

is to decouple the channel and floodplain flow, as in one-dimensional plus and

two-dimensional minus simulators. The representation of the floodplain is better

in two-dimensional minus simulators and they are the simplest simulators capable

of dynamic flooding. We will use LISFLOOD-FP as it is well established and has
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been developed in Bristol, so source code access and expertise are available. Fur-

thermore, in prediction LISFLOOD-FP fairs poorly compared to other simulators

unless the unknown parameters are first calibrated. It is therefore essential that

LISFLOOD-FP be used together with a formal calibration methodology.

2.2 Data Requirements for Prediction

To run the simulator we need to specify the boundary conditions, initial conditions,

topography, and friction.

2.2.1 Boundary Condition Data

The boundary condition data consists of values for each simulator dependent vari-

able on the boundary at each time step (Bates et al., 2005).

In LISFLOOD-FP boundary conditions must be defined for the one-dimensional

channel flow and the storage cell floodplain flow. In the channel, if a kinematic

wave is used the upstream inflow, Qin, must be known for all time, and this is

usually taken from river gauging station measurements or set constant for steady

flow. If a diffusive wave is used, in addition we need the downstream outflow,

Qout. Lateral flow q (see Equation (2.7)) would typically be set to zero in a one-

dimensional code, but represents the effect of channel-floodplain interaction on the

channel flow in LISFLOOD-FP (see Section 2.1.5).

On the floodplain the values of the free water height or the flow discharge on

the domain boundary must be specified for each time step. Normally the zero flux

condition is assumed so hi,j = 0.0 and Q(i,j),(k,l) = 0.0 for all cells (i, j) on the

domain boundary. However, this implies that water can only enter and leave the

domain within the channel, and can result in an unrealistic backward flooding as

water arrives in the downstream region quicker than the channel can transport it

out of the domain. This is simply resolved by fixing the free water height to some

nonzero value for the floodplain cells on the boundary around where the channel

exits the domain. Point sources are allowed by specifying the free water height or

the flow discharge over time for non-boundary cells.
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2.2.2 Initial Condition Data

The initial condition data consists of values for every simulator dependent variable

at time t = 0 (Bates et al., 2005). Normally these values are unknown, so for

uniform flows arbitrary initial values are specified and the simulator is run until

steady state is obtained, for unsteady flows the corresponding steady state results

are used as the initial values (Bates, 2005).

In LISFLOOD-FP initial conditions must be defined for the one-dimensional

channel flow and the storage cell floodplain flow. For steady flows we assume the

initial floodplain flow depth is 0 m, the channel flow depth is 1.75 m and the

channel discharge is 0 m3s−1.

2.2.3 Topography

For one-dimensional simulators it is ideal for the river cross-sections to be measured

by field survey, because this is the most accurate form of topography with the norm

of the error being only a few millimetres (Bates, 2005). However, field surveys are

very expensive and only provide a series of vertical planar measurements that

must be interpolated for use with higher-dimensional codes. The interpolated

topography neglects variation between cross-sections, and consequently will be

different if the cross-sections are measured at different positions along the channel.

For shallow water flows it is essential that the topography is represented accu-

rately over the floodplain to facilitate the modelling of the rapid fluctuation of

the flood boundary. Such large scale maps are provided by satellite and airborne

sensors and are becoming readily available (Bates et al., 2005). Airborne sensors

are far more accurate and of these the light detection and ranging (LiDAR) tech-

nique, which measures the distance between the aircraft and the ground using

pulses of laser energy, has proved particularly popular. The Environment Agency

in the UK is using a LiDAR system to capture the topography of river basins in

England and Wales to aid the assessment of flood risk. At an operating altitude

of about 800 metres the width of the scan is about 600 metres and measurements

are made at about 2 metre intervals giving very high resolution topographic data.
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Vegetation is partially penetrated by the laser pulse and so the last signal received

by the aircraft will hopefully give the ground level. Unfortunately LiDAR does

not penetrate the water surface so bathymetry must be obtained by field survey.

In LISFLOOD-FP the channel is discretized as a series of rectangular cross-

sections where the width and bankfull depth are taken from the bathymetry, and

the floodplain is discretized as a raster grid.

2.2.4 Friction

The unknown parameters of hydraulic simulators are the lumped friction coefficient

(e.g. Manning’s n) and, if turbulence is modelled using the Boussinesq assumption,

the eddy viscosity ν (Bates et al., 2005). The eddy viscosity only appears in two-

and three-dimensional models and is rarely treated as an unknown in practice,

usually being modelled using transport equations (see Section 2.1.4).

The lumped friction coefficient combines: skin friction arising from interaction

with the channel bed; form friction caused by meanders and changes to the cross-

sectional area; vegetative resistance that dominates floodplain flow; shear between

channel and floodplain flow; turbulence that is not explicitly represented; and ac-

celeration and deceleration. The resistances are lumped together because although

some can be modelled directly (e.g. skin friction and vegetative resistance) most

cannot. The lumped friction coefficient is normally taken to be some standard

resistance coefficient such as Manning’s coefficient of roughness, n, derived from

uniform flow theory.

The processes represented in the lumped friction coefficient n depend on the

simulator dimensionality and discretization. For example the flow geometry rep-

resentation is better in two-dimensional simulators than one-dimensional simula-

tors; consequently the form friction contribution to the lumped friction coefficient

is closer to the true physical form friction in two-dimensional simulators, whereas

in one-dimensional simulators the poor geometry representation must be com-

pensated for by the form friction contribution. As the simulator dimensionality

decreases or the discretization becomes coarser the lumped friction coefficient must

account for more unrepresented processes, and the simulator results become more
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sensitive to this value. Although the lumped friction coefficient is often referred

to as Manning’s n, because the value n takes is dependent on the simulator di-

mensionality and discretization, it is nonsensical to compare n between different

simulators, in particular to Manning’s empirical formula for open channel flow. We

prefer to think of this as a convention adopted (maybe erroneously) for lucidity.

In LISFLOOD-FP Manning’s channel friction nc can be different for every cross-

section and Manning’s floodplain friction nf can be different for every floodplain

pixel, although in general they are both fixed.

2.3 Data Requirements for Calibration

To run hydraulic simulators we must specify values for the unknown parameters

(friction coefficients and infrequently the eddy viscosity). As the friction coefficient

combines many sources of hydraulic resistance and compensates for unrepresented

processes and discretization (see Section 2.2.4), the value of the parameter is mean-

ingless outside the context of the present simulator. In particular, Manning’s n

is used in various simulators but the physical value of Manning’s n will not, in

general, be the value which results in the best simulator output, the so-called

true value. Furthermore, the true Manning’s n value will be different for different

simulators. The best simulator output is that which is closest to the truth. To

learn about the true values of the unknown parameters we compare the simulator

output, for various values of the unknown parameters, to an observation of the

truth. Calibration is discussed fully in Chapter 4.

Time series of water depth and discharge from river gauging stations have been

used to test wave routing in hydraulic simulators (Cunge et al., 1980; Horritt and

Bates, 2002). In the UK the distribution of national gauging stations relates to

flood risk but not directly to hydraulic simulator calibration (Bates, 2005). With a

typical separation of 10–40 km there will be few stations within a simulator domain.

Measurements are made at least hourly, the stage is accurate but the discharge

has a 5% error for in-channel flows and a 20% error for out-of-channel flows. Such

data cannot directly test the ability of a hydraulic simulator to reproduce flood
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depths over the whole domain, indeed it has been shown that different friction

values can yield the same time series but different flood extents (Romanowicz and

Beven, 2003; Romanowicz et al., 1996).

Point scale data includes point measurements of velocity and water level mea-

sured during the flood, and maximum water levels identified from high water marks

or deposits of material at maximum inundation (Bates et al., 2005). However, Lane

et al. (1999) warn against using point scale data for calibration because they are

unreconcilable with simulator variables which are normally averaged over space

and time.

Instantaneous observations of flood extent can be obtained by ground survey

but are becoming more readily available through the use of airborne and satellite

imaging (Bates et al., 2005). Such images provide data for the whole spatial do-

main, and in shallow floodplains the flood extent is very sensitive to small changes

in water depth so hydraulic simulators must accurately reproduce flood depths to

reproduce the flood extent.

Synthetic aperture radar (SAR) uses the Doppler effect to simulate a larger aper-

ture radar, microwaves penetrate the cloud cover and, by using different frequen-

cies, give a picture of the canopy (Horritt, 1999). Flood extent can be extracted

from the resulting noisy image using an active contour region or snake (Horritt,

1999). A snake is a closed curve with an energy functional dependent on the snake

geometry and the properties of the image. The functional is defined such that

the energy is minimised when the snake lies on the flood boundary, so identifying

the flood extent becomes an energy minimisation problem. Figure 2.1 shows a

SAR image of a 3 km by 3 km subregion of the River Thames between Buscot and

Standlake overlaid with shorelines derived using the snake algorithm and from aer-

ial photographs (Horritt et al., 2001). The error in shoreline delineation from aerial

photographs is less than 20 metres, so inconsistencies between the shorelines are

due to errors in the SAR or snake algorithm. Top-right flooded vegetation appears

dry in the SAR image, and dry islands appear wet because sparsely vegetated areas

have similar backscatter to water, otherwise the two shorelines agree reasonably
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Figure 2.1: SAR image overlaid with shorelines derived using the snake algorithm
(green) and from aerial photographs (red), for a 3 km by 3 km subregion of the
River Thames between Buscot and Standlake. Reprinted with kind permission of
Horritt et al. (2001).

well.

Satellite overpass times are of the order of days so it is rare to obtain multiple

observations of flood extent for the same event, which we could use to test flood

wave propagation. In valley filling events in which large changes in water depth

result in small changes to flood extent, the simulator will not need to accurately

represent flow depth to reproduce the observed flood extent, and so this data does

not help constrain the simulator (Mason et al., 2003).

Ideally the data used for calibration will be spatio-temporal, but until this be-

comes a reality it will be necessary to combine time series with spatial data in

order to fully constrain hydraulic simulators. However, before this can be done a

formal calibration framework should be developed for observations of flood extent

which until now have only been treated with non-probabilistic methods.
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Figure 2.2: Image reproduced with kind permission of Ordnance Survey and Ord-
nance Survey of Northern Ireland.

2.4 Buscot Dataset

The test site we use throughout the thesis is located on the upper river Thames

in Oxfordshire, UK, see Figure 2.2. The 4 km long reach is almost entirely agri-

cultural, to the South the flow is restricted by high land but there is an exten-

sive floodplain to the North (Horritt and Bates, 2001). The bankfull discharge is

40 m3s−1 and the river drains a 1000 km2 catchment (Aronica et al., 2002).

The catchment is bounded upstream by a weir at Buscot. Topographic data is

provided by a 50 m resolution airborne stereophotogrammetric digital elevation

model (DEM) with a vertical accuracy of ±25 cm and 48 by 76 cells (Aronica

et al., 2002). Channel position can be discretized from ordnance survey 1:10000

series maps and cross-sections can be found from ground surveys.

In December 1992 a 1 in 5 year flood event coincided with an overpass of the

ERS-1 satellite. The SAR image was taken 20 hours after the peak discharge of 76

m3s−1, but the hydrograph was very broad so the discharge was still 73 m3s−1. The

SAR image has a resolution of 12.5 m and was processed with the snake algorithm

(Horritt et al., 2001) to form a map of flood extent with boundaries accurate to

±50 m.

A dynamic simulation was deemed unnecessary because the reach is short so

flow reacts quickly to any changes to the inflow, and the hydrograph changes
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Figure 2.3: Digital elevation model for the Buscot dataset. The channel has been
added manually.

slowly. Therefore a kinematic wave was used for the channel flow. The DEM

was modified to include a dyke which runs for 500 m along the North side of the

channel upstream (Horritt and Bates, 2001), and the channel cross-sections are all

set to be 20 m wide and 2 m deep, see Figure 2.3. The boundary conditions are:

for the channel a constant inflow of 73 m3s−1, and for the floodplain a fixed water

surface elevation on the East side to allow water to flow out of the domain without

first returning to the channel, and zero flux conditions on the other three sides.

The initial conditions are: no water on the floodplain, 2 m deep in the channel,

and zero outflow. The unknown parameters are Manning’s channel friction nc and

floodplain friction nf . LISFLOOD-FP was run for 500 values of nc and nf sampled

uniformly between 0.01 and 0.05 m3s−1 and 0.02 and 0.10 m3s−1 respectively, the

total computation time was 35 hours (Horritt and Bates, 2001).

The simulator output takes the form of water depths on a 48 by 76 raster grid

whereas the flood extent is represented as a binary valued 192 by 304 raster grid.

We resolve the discrepancy in resolutions by reprojecting the flood extent onto a

48 by 76 raster grid; each 50 m resolution cell corresponds to 16 12.5 m resolution
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cells, if the average over these cells is greater than 0.5 we take the value 1 otherwise

−1. Water depths give some indication about how wet a cell is but not how dry,

in Section 8.9 we discuss a method for using this data directly and the problems

with doing so, elsewhere in the thesis we threshold the simulator outputs at 0 m

water depth to obtain binary array representations of flood extent.

In this chapter we have given an overview of the hydrological background. We

justified the use of LISFLOOD-FP and described the Buscot dataset that will

be used to demonstrate our calibration framework. In the next chapter we will

describe the statistical background.
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Statistical Background

In the last chapter we gave an overview of the simulator, the need for calibration,

and the data we will use to calibrate the simulator. In this chapter we give an

overview of Bayesian statistics, the Markov chain Monte Carlo (MCMC) method

for generating a sample from the unnormalised posterior, and directed acyclic

graphs (DAGs) for illustrating hierarchical models.

3.1 Bayesian Statistics

Statistical inference is the science of making conclusions about a population from

samples from that population. Let X be a random variable corresponding to

some property of a sample from the population. We specify a probability model

p(x|θ) for X, then for an observed sample X = x we can make inference about

a population characteristic θ. How we make inference about θ depends on the

approach to inference that we adopt. Throughout this discussion we will adopt

the notation of continuous random variables, the discrete case is derived similarly.

We will use the terms density and distribution interchangeably.

There are two main approaches to statistical inference which differ in their treat-

ment of θ. In the classical or frequentist approach probability is defined to be the

long run proportion of times an event occurs, so θ is treated as an unknown con-

stant (see Rice, 1995). In the Bayesian approach probability is defined as a mea-

sure of an individuals belief, so θ is treated as a random variable (see Gelman et al.,

2004). The consequence is that frequentist inference is based on p(x|θ) whereas
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Bayesian inference is based on p(θ|x). The interplay of Bayesian and frequentist

statistics is discussed in Bayarri and Berger (2004).

We often have a belief about an experiment that is not captured in the data.

Treating θ as a random variable allows us to specify a prior distribution for θ,

p(θ), which encodes our subjective beliefs about the value of θ before any data has

been observed. An example from O’Hagan (1994) will make this clearer. Suppose

we look out of the window and see a big brown thing with smaller brown things

coming out of that and little green things on them. Is the thing we observe a tree

or a postman? Let A be the event we observe such an object, B1 be the event the

object is a tree, and B2 be the event the object is a postman. Clearly we would

reject the hypothesis that the object is a postman because P (A|B1) > P (A|B2).

Is the thing we observe a tree or a fake tree? Let B3 be the event the object

is a fake tree, then P (A|B1) = P (A|B3) so they are equally likely but surely we

would reject the idea it is a fake anyway. We need to include our prior belief,

P (B1) > P (B3), in making our decision.

The presence of a prior distribution leads naturally to inference using the pos-

terior distribution through Bayes’ theorem,

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ) dθ

(3.1)

where the denominator is p(x). We can rewrite Equation (3.1) as

posterior ∝ likelihood × prior.

In frequentist inference the value of θ which maximises the likelihood is impor-

tant, in Bayesian inference we take the weighted average of the likelihood where

the weights used are taken from the prior distribution. One of the main advantages

of the Bayesian approach is that the entire inference is contained in the posterior

distribution.

We can also view the posterior as the prior updated by the likelihood. Thinking

of it in these terms motivates sequential updating. Consider two independent vari-

ables X and Y from p(x|θ) and p(y|θ). Suppose we observe x then the posterior
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p(θ|x) becomes the prior before observing y,

p(θ|x, y) ∝ p(y|θ)p(x|θ)p(θ).

Note that the result will be the same regardless of the order of the observations,

and would also be the same if we had updated simultaneously on (x, y) because

p(y|θ)p(x|θ) = p(x, y|θ).
So far we have treated θ as a scalar, but the algebra for the multivariate case θ

is the same. To make posterior inference about a single term θi we integrate out

the other parameters from the posterior density

p(θi|x) =

∫
p(θ|x) dθ−i, (3.2)

where θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) for some integer n.

The ability to specify subjective beliefs through the prior distribution is both

the appeal of the Bayesian method and the feature most susceptible to misuse.

We now briefly discuss some of the issues involved in specifying a prior.

The computational difficulty in integrating out θ−i in Equation (3.2) means, in

general, the posterior cannot be found exactly and we must use some approximate

method (see Section 3.2). However, when the likelihood is a member of an ex-

ponential family, we are able to identify a prior for which the posterior is in the

same family of distributions as the prior. These are called conjugate priors. For

example let X1, X2, . . . , Xn be independent and identically distributed N (θ, κ−1),

where the precision κ is known. Suppose our prior is θ ∼ N (a, b−1), then

θ|x1, . . . , xn ∼ N
(
ba + nκx

b+ nκ
,

1

b+ nκ

)
. (3.3)

Although very convenient, conjugate priors are not appropriate if they do not

represent our prior belief, even if they do exist.

As the sample size n increases the prior becomes less important, see Equa-

tion (3.3). However, this does not mean Bayesian inference is only appropriate

when a lot of data is available. When there is not a lot of data available it is

essential to include expert subjective beliefs when making decisions.
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Consider what happens in Equation (3.3) as b → 0. The posterior becomes

N (x, (nκ)−1) but the prior becomes p(θ) ∝ 1.0 for θ ∈ R which cannot be nor-

malised, we say it is an improper prior. Although the use of improper priors is a

contentious issue, if we take b to be arbitrarily close to 0.0 we find the resulting

posterior is arbitrarily close to the one obtained using an improper prior, which in

some sense justifies their use.

Representing ignorance is not as trivial as taking p(θ) ∝ 1.0 because priors are

not in general invariant to transformations. Bertrand’s paradox demonstrates this

very effectively (see for example Kac and Ulam, 1968). Consider the probability

that a chord of a circle drawn at random is longer than the side of an inscribed

equilateral triangle. If one end of the chord is fixed and we consider the angle that

the chord makes with the tangent to be U [0, π] then the probability will be 1/3,

but if we assume the midpoint of the chord is picked randomly within the circle

then the chord is only longer if the midpoint lies within a circle of half the radius

so the probability is 1/4. We shall see some more examples in Chapters 7 and 8.

The main objection to Bayesian inference by proponents of frequentist inference

is the fact that the results will depend on the prior which is subjective. The

Bayesian counter to this argument is best summarised by de Finetti (1974) who

argues that probability does not exist in any objective sense and can only be

thought of as an individual’s bet. The main advantage of the Bayesian approach is

that probabilistic statements can be made about θ because we treat it as a random

quantity. This is well illustrated by comparing (frequentist) confidence intervals

with (Bayesian) credible intervals. The region Cα is a 100(1−α)% credible interval

if

∫

Cα(x)

p(θ|x) dθ = 1 − α.

A 100(1−α)% confidence interval does not mean θ lies in this interval with prob-

ability (1 − α) because θ is fixed – it is either in the interval or not. The correct

interpretation is that if many samples are made from the distribution then in the

long run, 100(1 − α)% of the confidence intervals calculated using these samples
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will encompass the true θ value. A 100(1 − α)% credible interval means the pos-

terior probability that θ is in the interval is (1 − α). Credible intervals provide

the information we want to know and their interpretation is more intuitive than

confidence intervals.

As for confidence intervals, credible intervals are not unique, therefore highest

posterior density regions are defined. Let Cα(x) = {θ : p(θ|x) > δ} then choose δ

such that ∫

Cα(x)

p(θ|x) dθ = 1 − α,

then Cα is the 100(1 − α)% highest posterior density credible region.

Berger and Wolpert (1988) argue that frequentism should be rejected for not

satisfying the likelihood principle, which states that if two experiments yield likeli-

hood functions that are proportional to one another then the same inference must

be made from these two experiments (see O’Hagan, 1994). The fact that the like-

lihood principle is satisfied by Bayesian inference is obvious from Equation (3.1).

The likelihood appears in the numerator and denominator, so multiplying the like-

lihood by a constant makes no difference to the posterior. The reason frequentist

inference does not satisfy the likelihood principle is because frequentist inference is

based not only on the value observed but on the distribution p(x|θ) at unobserved

values. The likelihood principle requires inference to only be based on the values

of x that are observed. For example the concept of unbiasedness does not satisfy

the likelihood principle, the bias of an estimator θ̂(x)

bias(x) = E
(
θ̂(x)|θ

)
− θ

depends on p(x|θ) for all x through the expectation.

Except in some special cases (e.g. conjugate priors) the evaluation of the nor-

malising constant p(x) =
∫
p(x|θ)p(θ) dθ cannot be avoided or done analytically

so we must make use of approximate methods. The (re)discovery of Markov chain

Monte Carlo (MCMC) by the Bayesian community in the 1980s has proved to be

a large factor in making Bayesian statistics more generally applicable. In the next

section we discuss MCMC.
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3.2 Markov Chain Monte Carlo

The general situation we consider in this section is when we have an unnormalised

density πu and we want to make inference using the normalised density π, e.g.

P (θ ∈ C) =
∫

C
π(θ) dθ. This situation is common in Bayesian inference because

we are typically not able to integrate out θ−i, see Section 3.1. This is also true

of distributions defined in terms of their full conditionals such as the Ising model

(see Besag, 1974, and Chapter 6). Other approaches to this problem include

rejection sampling and importance sampling (see Robert and Casella, 2004, pages

90–106), but for rejection sampling a distribution h must be identified such that

πu/h is bounded and the efficiency of the algorithm is strongly dependent on

the h chosen. If πu/h is not bounded then expectations can be calculated using

importance sampling but it is not possible to form a sample from π.

Markov chain Monte Carlo works by constructing a time-homogenous discrete

time Markov chain with stationary distribution π (Gilks et al., 1996). We form

a realisation {θ(1), θ(2), . . . , θ(K)} and treat it as a random sample from π. Note

it is not a random sample but the empirical distribution estimates the target

distribution (Green, 2001). Approximate expectations and probabilities are

E (f(θ)) =

∫
f(θ)π(θ) dθ ≈ 1

K

K∑

k=1

f(θ(k)) and

∫

C

π(θ) dθ ≈ 1

K

K∑

k=1

1[θ(k) ∈ C]

for any region C.

Let the Markov chain transition probability be written P (dθ′|θ), then to con-

struct a Markov chain with stationary distribution π we require

∫

θ∈Θ

π(dθ)P (dθ′|θ) = π(dθ′), (3.4)

where Θ is the state space for θ, i.e. if the current distribution is π then one step

later we are still in π, we say π is invariant for the transition kernel P . If this is

satisfied by the transition probabilities we hope that a realisation from the Markov

chain, {θ(1), θ(2), . . . , θ(K)}, will approximate a sample from π as K increases (we
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will discuss convergence a little later). A sufficient but not necessary condition for

π to be invariant for transition kernel P is that we have detailed balance

π(θ)P (θ′|θ) = π(θ′)P (θ|θ′)

for all θ, θ′ ∈ Θ. We say the Markov chain is reversible with respect to π. It is

simple to prove that Equation (3.4) is satisfied so π is the stationary distribution

of the chain. Most MCMC methods are developed on the basis of detailed balance

because it is a lot easier to work with than invariance (see Green, 2001).

We will now discuss some of the main recipes for MCMC. Many methods can be

seen as special cases of the Metropolis-Hastings sampler, which was introduced by

Hastings (1970) as a generalisation of the Metropolis method (Metropolis et al.,

1953).

In the Metropolis-Hastings method a candidate value θ′ is proposed from an

arbitrary density q(θ′|θ). This proposal is accepted as the next state of the chain

with probability

α(θ, θ′) = min

{
1,
π(θ′)q(θ|θ′)

π(θ)q(θ′|θ)

}
.

This acceptance probability has been chosen so the Markov chain is reversible

with respect to π, it is not unique but is optimal in the sense that it maximises the

probability of acceptance. Peskun’s theorem (Peskun, 1973) says that changing a

reversible Markov chain sampler to increase the probability of acceptance cannot be

bad and we expect it to reduce asymptotic variance. There is no need to calculate

the unknown normalising constant because in the ratio it cancels, π(θ′)/π(θ) =

πu(θ′)/πu(θ).

We do not need to update all components of θ simultaneously. Let A be a subset

of indices and θA = {θi|i ∈ A}, then the proposal distribution could be

q(θ′|θ) = qA(θ′
A|θ)1[θ′

−A = θ−A].

Although single component updates are simplest, updating more than one compo-

nent at a time sometimes reduces the time to convergence. The order in which the

updates are made at each iteration does not need to be fixed, and furthermore,

not all components need to be updated at each iteration.
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There are many interesting special cases of the Metropolis-Hastings sampler,

which include: independence Metropolis-Hastings when we ignore the current

state of the chain q(θ′|θ) = q(θ′); Metropolis method when the proposal is

symmetric q(θ′|θ) = q(θ|θ′), in this case the proposal ratio cancels; and ran-

dom walk Metropolis when q(θ′|θ) = q(|θ′ − θ|) and q(·) is symmetric about 0.

The Gibbs sampler for θA is a special case of the Metropolis-Hastings sampler

when the proposal distribution is taken to be the full conditional distribution,

q(θ′|θ) = π(θ′
A|θ−A)1[θ′

−A = θ−A] (see Geman and Geman, 1984). The Gibbs

sampler is in some sense automatic because there is no possibility of tuning the

proposal distribution and proposals are always accepted α(θ, θ′) = 1. The Gibbs

sampler is of particular interest in applications in which the full conditionals have

a simple form, such as in spatial statistics where the joint distribution may be

defined in terms of the full conditionals, (see for example Besag et al., 1995).

Only the stationary distribution of the chain is of interest, the first iterations

will be affected by the initial value θ(0) and should be removed. We call this period

before the chain converges the burn-in period.

The kernel P is φ-irreducible if there exists a probability distribution, φ, on Θ

such that for all A ⊆ Θ

φ(A) > 0 ⇒ P (τA <∞|θ(0) = θ) = 1

for π-almost all θ ∈ Θ where τA = min{k : θ(k) ∈ A}. If irreducible for any φ then

it is π-irreducible, the weaker condition allows checking of fewer sets.

If the Markov chain {θ(k)} with transition kernel P is φ-irreducible and invariant,

then the sample expectation converges to the population expectation for π-almost

all θ(0).

Let {A0, A1, . . . , Am−1} be a collection of subsets such that P (Ai+1 mod m|θ) = 1

for all θ ∈ Ai and all i, this is called an m-cycle. A chain is aperiodic if the largest

m for which a m-cycle exists is 1.

If the Markov chain {θ(k)} is φ-irreducible, invariant and aperiodic then the

distribution of {θ(k)} converges to π for π-almost all θ(0).

44



3.3. Introduction to Directed Acyclic Graphs

3.3 Introduction to Directed Acyclic Graphs

Graphical models (GMs) have been used in a number of contexts, including ma-

chine learning, market research, speech cognition, information theory, pattern

recognition, and engineering (see Best and Green, 2005). The key themes run-

ning through all of these are uncertainty and complexity. GMs break complex

systems down into smaller parts, the parts are connected by probability theory

which provides a consistent model and a means of interfacing with data (see Jor-

dan, 1999). For a comprehensive reference on the theory of GMs see Lauritzen

(1996).

Common to all GMs are: nodes representing random variables, and edges or

arrows between variables encoding conditional independence assumptions. The

two main classes of GMs are directed acyclic graphs (DAGs) and conditional inde-

pendence graphs (CIGs). DAGs (also known as Bayesian or belief networks) are

commonly used in the statistics community where there is some directional depen-

dence to encode. The term acyclic refers to the fact that there can be no directed

loops. Condition independence graphs (also known as undirected graphs, Markov

fandom fields or Markov networks) are often used in spatial statistics where the

dependence between variables has no clear direction (see Møller, 2003; Rue and

Held, 2005). It is possible to form a certain combination of these two classes, where

there may be directional dependence between sets of variables but within the sets

there may be undirected dependence.

Directed acyclic graphs have three components:

1. Nodes representing random variables.

2. Arrows between nodes encoding conditional independence assumptions. (If a

variable is not modelled directly on another, there will be no arrow between

them.)

3. Conditional distributions defined at each node.

If there is an arrow from node A to node B we say node A is the parent of

B, and B is the child of A. If a node has no parents it is called a founder node,
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A

B

C D

Figure 3.1: Example directed acyclic graph.

and requires a marginal distribution to be specified rather than a conditional one.

Given conditional (or marginal) distributions at each node the joint distribution

is completely and uniquely specified; let x = (x1, . . . , xn) be the variables in the

DAG and pa(i) be the set of indices of the parents of xi, then

p(x) =

n∏

i=1

p(xi|xpa(i)),

is the joint distribution of x. For example, the joint distribution for the DAG in

Figure 3.1 would be

P (A,B,C,D) = P (D|A,B,C)P (C|A,B)P (B|A)P (A)

= P (D|C)P (C|A,B)P (B)P (A).

GMs provide a compact visual representation of the model structure, and reduce

the complexity in defining joint distributions for high dimensional problems. Best

and Green (2005) describe a paternity experiment in which a direct specification

of the joint distribution requires ≈ 2000 million numbers to be specified (and we

would have to check the probabilities sum to 1). However, when a DAG is used

only 1347 numbers need to be specified, making the problem more manageable.

This is because we only need to specify the values of the distribution at each node

conditional on all possible values of the corresponding parent nodes.

Inference in GMs is very simple if the variables of interest are descendants of

the observed variables, called top-down reasoning. For example, suppose A and B

in Figure 3.1 are observed and we want to make inference about C and D, then

P (C,D|A,B) = P (D|C)P (C|A,B).
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However, if the variables of interest are ancestors of the observed variables,

inference, called bottom-up reasoning, requires recourse to Bayes’ theorem. For

our example suppose D is observed and we want to make inference about A, B

and C, and all variables are continuous, then

P (A,B,C|D) =
P (D|C)P (C|A,B)P (A)P (B)

P (D)
,

where

P (D) =

∫∫∫
P (D|C)P (C|A,B)P (A)P (B) dA dB dC.

In general the denominator, P (D), is very difficult to calculate, making exact

computation of the posterior density P (A,B,C|D) infeasible. However, Markov

chain Monte Carlo (MCMC) can be used to generate a sample from the joint pos-

terior distribution P (A,B,C|D), and this requires only the unnormalised density

P (D|C)P (C|A,B)P (A)P (B). Marginal distributions, for example

P (A|D) =

∫∫
P (A,B,C|D) dB dC,

have integrals in the numerator and denominator which may both be difficult to

calculate. Let {(A(k), B(k), C(k))|k = 1, . . . , K} be a sample from the joint posterior

P (A,B,C|D) generated by MCMC, then if we “throw away” the B and C values

we obtain a sample from the marginal distribution P (A|D), {A(k)|k = 1, . . . , K}.
All MCMC methods that update subsets of variables require full conditional dis-

tributions, which makes them particularly well suited to DAGs because the con-

ditional distribution of a node given all others is dependent only on its children,

parents and the other parents of its children.

In DAGs all variables are conditionally independent of their non-descendants

given their parents. Conditional independence assumptions encoded by DAGs

are well described by the Bayes Ball algorithm from Ross Shachter (see Shachter,

1998). Nodes A and B are conditionally dependent given the set of observed nodes,

if a ball can travel along the graph from A to B where the allowable movements

of the ball are shown in Figure 3.2.
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Figure 3.2: Rules for the Bayes ball algorithm from Ross Shachter. The white
nodes correspond to unobserved variables and the grey nodes to observed variables.
The solid arrows show the connections to the neighbouring nodes along the path
of the ball. The dashed lines indicate whether the ball can pass through the node
or whether it is “bounced”.
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Smoker Pyromaniac

Has
Matches

P (S) = 0.1 P (P ) = 0.01

P (M |S, P ) = 0.99
P (M |Sc, P ) = 0.9
P (M |S, P c) = 0.6
P (M |Sc, P c) = 0.01

Figure 3.3: An example of Berkson’s paradox. The superscript c indicates the
complement of the event, e.g. Sc is the event that the person does not smoke.

The least intuitive relationship is shown in the first column of Figure 3.2. Mar-

ginally, parents with a common child are independent, but they become condi-

tionally dependent if the child is observed. This is known as Berkson’s paradox

(or explaining away, see Murphy, 2001). As an example let S be the event that

someone smokes, let P be the event that the person is a pyromaniac, and let M

be the event they have matches. Let the joint distribution be defined by the DAG

in Figure 3.3. Then looking at the population of people who were found to have

matches, we find P (S|M) = 0.780 and P (S|M,P ) = 0.109. We conclude that,

within the population of people with matches, being a pyromaniac makes you less

likely to be a smoker.

Let us illustrate the concepts discussed above using an example borrowed from

Best and Green (2005). Suppose we have one fair coin A and one biased coin B,

such that the probability of getting a head P (B = H) = 0.8. We pick a coin at

random and toss it 6 times. Suppose we get 6 heads, then what is the chance we

get a head on the next toss? Figure 3.4 shows how we could represent this using

a DAG.

If we know which coin has been chosen then the chance of getting a head on the

next throw is independent of whether the first 6 tosses were all heads. However,

when the coin is unknown the two events are dependent because getting all heads

on the first 6 throws informs us about the probability that we have chosen coin A
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Choice of
Coin

First 6 tosses
are heads

Head on
next toss

P (Coin A) = 0.5

P (6H|Coin A) = 0.56

P (6H|Coin B) = 0.86
P (H|Coin A) = 0.5
P (H|Coin B) = 0.8

Figure 3.4: An example illustrating the various features of directed acyclic graphs.

or coin B. This can be read straight from Figure 3.4 using the Bayes Ball rules

laid down in Figure 3.2.

The efficiency of using graphical models, instead of defining the joint density

directly, can be seen by noticing that we would need to define 23 = 8 joint prob-

ability values if we attacked the problem directly, but using graphical models we

have been able to define the system with only 5.

Suppose we obtain all heads on the first 6 throws. We can make inference about

the probability of getting a head on the next throw by first bottom-up reasoning

using Bayes theorem to find the posterior for the coin choice,

P (A|6H) =
P (6H|A)P (A)

P (6H|A)P (A) + P (6H|B)P (B)
= 0.056,

and P (B|6H) = 0.944, and then top-down reasoning,

P (H|6H) = P (H|A)P (A|6H) + P (H|B)P (B|6H) = 0.783,

where we have used the fact, encoded by the DAG, that given the choice of coin the

probability of getting a head on the next throw is independent of whether the first

6 throws were heads, i.e. P (H|A, 6H) = P (H|A) and P (H|B, 6H) = P (H|B).

In Chapter 5 we will use a DAG to illustrate our Bayesian framework for calibra-

tion of flood inundation simulators conditioned on an observation of flood extent.

In this chapter we have reviewed the statistical background for the thesis. In

the next chapter we will classify the uncertainties in flood inundation prediction

and review methods for calibration and calibrated prediction.
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Handling Uncertainty in Flood
Inundation Simulators

We begin this chapter by classifying the uncertainties in hydraulic modelling. We

claim that most uncertainties are due to lack of knowledge rather than intrinsic

randomness. This cannot be represented by frequentist statistics, so we need to

use Bayesian statistics. We introduce calibration and calibrated prediction, and

review two methods, one Bayesian and one non-probabilistic, that are indicative

of the methods currently available. We end the chapter with the way forward for

calibration and calibrated prediction.

4.1 Classifying Uncertainties in Hydraulic Mod-

elling

In his paper on the role of statistics in science, Box (1976) explains that “all models

are wrong, but some are useful”. There are many different sources of uncertainty

that contribute to a simulator being wrong and it is important to identify which

sources are accounted for by a given uncertainty handling approach (see Section 4.2

for a review of approaches). Kennedy and O’Hagan (2001) present a classification

of uncertainties that is appropriate for all computer codes of complex physical

systems. In this section we describe this classification and say how it relates to

the specific problem of flood inundation modelling.

However, before we describe how we might classify the sources of uncertainty

it is worth noting that there are only two types of uncertainty. The uncertainty
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in repeated events because of intrinsic randomness and unpredictability is called

aleatory uncertainty, and the uncertainty in unrepeatable events due to a lack of

knowledge is called epistemic uncertainty (O’Hagan, 2004a,b). Many of the sources

of uncertainty in computer code approximations to physical systems are epistemic

and this has an important bearing on the method used to handle uncertainty. In

frequentist statistics the probability of an event is defined to be the long run pro-

portion of times it occurs, therefore it is only appropriate for aleatory uncertainties.

On the other hand, Bayesian statistics, as defined in Section 3.1, can quantify both

aleatory and epistemic uncertainties through probabilities (O’Hagan, 2004a) and

is therefore more appropriate as a tool for handling uncertainty in computer codes

of physical systems.

The simulator inputs can be divided into calibration inputs θ and variable inputs

x. For our purposes, the calibration inputs are the channel friction, θc, and flood-

plain friction, θf , and the variable input which changes between the calibration and

prediction events is the inflow discharge. We assume the topography is measured

without error and is constant between events. For a given parameter set (x, θ)

the deterministic output of the flood inundation simulator, η(x, θ) ∈ {−1, 1}n, is

a binary array in which pixels take the value 1 if wet and −1 if dry. The true flood

extent we are attempting to predict is denoted ξ ∈ {−1, 1}n, and the observation

of this flood extent is denoted ζ ∈ {−1, 1}n. For the calibration event, x, the

simulator is run for a sample θ(1), . . . , θ(K) of calibration input values to obtain

y(1), . . . ,y(K) where y(i) = η(x, θ(i)). For the same set of calibration input values

the simulator is run for the event we want to predict, x′, to obtain y′(1), . . . ,y′(K)

where y′(i) = η(x′, θ(i)). We want to make inference about the flood extent in the

future given our simulator and an observation of a past event.

4.1.1 Parametric Uncertainty

Parametric uncertainty is the uncertainty associated with the unknown input para-

meters, θ, called the calibration inputs. For the Buscot application of LISFLOOD-

FP (see Section 2.4) there are two unknown parameters: one for friction in the

channel, θc, and one for friction on the floodplain, θf . More generally, using
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LISFLOOD-FP we can assign a different friction parameter for each pixel in the

floodplain, and more complex codes may also have unknown input parameters

that characterise the higher-order processes represented. However, for simplicity

we here use only the two parameter case.

To make predictions about a future event by calibrating the simulator on an

observed event, the unknown parameters are assumed to be the same for calibration

and prediction events. This is a very strong assumption for the flood inundation

problem because the calibration event will typically be much smaller in magnitude

than the prediction event, and when an area becomes flooded the effect of friction

changes (Romanowicz and Beven, 2003). However, we are calibrating on only one

observation and therefore there is no possibility of interpolation between events of

different magnitudes. For the Buscot example the same 500 simulations are used

for the calibration and prediction events so this issue will not arise, but in practice

the validity of this assumption must be checked for each case considered.

In Bayesian statistics the assumption of a “true” distribution for an unobserved

event, p(ξ), implies that there is a “pseudotrue” parameter value θ⋆, such that,

under relatively weak conditions, p(θ|ξ) converges to θ⋆ as information about θ

contained in ξ increases (Spiegelhalter et al., 2002). In practice it may be difficult

to distinguish between different parameter values with the limited data available,

in statistics this is called nonidentifiability of parameters and in hydrology this is

called equifinality (Beven, 2006). Rather confusingly equifinality is said to be a

lumping together of “nonidentifiability”, “nonuniqueness” and “instability” (Ebel

and Loague, 2006). We have used quotation marks to differentiate these hydrolog-

ical terms from their statistical namesakes which have subtly different definitions.

In hydrology, “identifiability” requires there to be a unique model parameterisa-

tion in which all the parameters are meaningful. “Uniqueness” requires that only

one set of parameters can be estimated from the observed data and that this set

of parameters represent the behaviour in the event we want to predict. “Stabil-

ity” requires that small changes in the observed data do not significantly change

the estimated parameter set values, and, conversely, that small changes to the
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parameter set values do not significantly change the simulator output.

Beven (2006) argues that the potential for multiple acceptable values should

be a feature of any uncertainty handling approach. This view is now widely ac-

cepted throughout hydroinformatics (Wagener and Gupta, 2005). In the Bayesian

context, Swartz et al. (2004) argue that issues of nonidentifiability should be recti-

fied by using a prior that is informative about the nonidentifiability. We prefer the

stance of Lindley (1971), that nonidentifiability causes no problem for the Bayesian

approach, simply integrate the posterior as required. Allowing the posterior to be

flatter means that in prediction we will be averaging over a greater number of

simulations. This seems preferable because the lack of observed data requires us

to assume θ is stationary between the event we are calibrating on and the event we

want to predict although this will rarely be the case (see Section 5.1). Typically

any particular θ only provides acceptable performance for a small range of x.

4.1.2 Parametric Variability

When some of the variable inputs x are not fixed but are allowed to vary according

to some joint distribution the resulting additional uncertainty on the prediction of

the process z is called parametric variability. We may leave some inputs unspecified

because we cannot measure them or because we are interested in how uncertainty

on the inputs propagates to uncertainty on the predictions, this is called uncer-

tainty analysis (UA). For the Buscot application of LISFLOOD-FP the variable

inputs are the inflow hydrograph and the topography, both of which are treated

as error free for our purposes. Wilson and Atkinson (2005) investigate the effect

of topographic uncertainty on inundation predictions, and Pappenberger, Matgen,

and Beven (Pappenberger et al.) investigate the effect of rating curve uncertainty

on inundation predictions.

Now we have discussed the uncertainties associated with variable inputs, x, and

calibration inputs, θ, it is worth clarifying the differences between these two types

of input. Between the event we calibrate on and the event we want to predict we

expect the calibration inputs to be the same and the variable inputs to be different.

The variable inputs relate directly to physical quantities that can be measured,
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but the calibration inputs take account of unrepresented processes in the simulator

so do not relate to measurable physical quantities. If variable inputs cannot be

measured then prediction cannot be carried out because we cannot calibrate these

inputs, they are not stationary between events. However, if the measurement of a

variable input is not very accurate we can assign it a prior distribution.

4.1.3 Residual Variability

The real world process that we are trying to predict is conditioned by the variable

inputs of the simulator, x. There will not be a unique real process satisfying these

conditions, the variation given these conditions is called residual variability. We

are combining two sources of uncertainty here: first the stochasticity of nature

and second the effect of the variable inputs not fully conditioning the real process.

Therefore residual variability may be reduced by identifying more conditions in the

simulator. For example for flood inundation simulators we may find that including

higher-order processes such as full three-dimensional solutions to the Navier-Stokes

equations helps constrain the space of possible real process values. Kennedy and

O’Hagan (2001) define the true process value to be the mean averaged over residual

variability.

4.1.4 Simulator Inadequacy

Even if we are certain about the values of the simulator inputs the simulator pre-

dictions will not be perfect. Simulator inadequacy is defined by Kennedy and

O’Hagan (2001) as the discrepancy between the true mean value of the real world

process and the output of the simulator run at the true value of the calibration

inputs, θ⋆. For the flood inundation application we can see that simulator inad-

equacy should increase as the dimensionality of the processes represented in the

simulator decreases.

4.1.5 Code Uncertainty

Although the computer code is deterministic we do not know the value of the

output until the code has been run, and as each run may be very computer intensive
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we may only be able to run the code for a limited number of input configurations.

The uncertainty about the code output is called code uncertainty and is zero

where the code has been run. Kennedy and O’Hagan (2001) propose the use of

a statistical emulator for the code output to interpolate between the points at

which the code has been run. Although LISFLOOD-FP can be slow when high

resolution data are used, in Chapter 5 we develop a method that works with a

computationally feasible set of runs of the code and requires no emulator.

4.1.6 Observation Error

Observation error is that associated with the measurement of the real world

process. For the flood inundation problem we are using an observation of flood

extent taken from synthetic aperture radar (SAR) using an active region segmen-

tation algorithm (Horritt, 1999). The errors in the SAR are of two types: errors

near the flood boundary and field misclassifications (see Section 2.3). In practice,

observation error cannot be separated from residual variability unless we have re-

peated observations where all conditions are the same, even those which are not

recognised by the variable inputs (Kennedy and O’Hagan, 2001).

Now we have classified the sources of uncertainty in complex codes of physi-

cal systems, in the next section we consider a number of methods for handling

uncertainty in these codes.

4.2 Calibration and Calibrated Prediction

In this section we review methods for calibration and calibrated prediction.

4.2.1 Handling Uncertainty

Without an observation of a past event, uncertainty handling is normally limited

to studying the relationship between the calibration and variable inputs, θ and x,

and the simulator output, η(x, θ). Uncalibrated predictions of the true value of

the real process, ξ, are only possible if we model the relationship between ξ and
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the simulator output η(x, θ), i.e. the simulator inadequacy, and specify values

or distributions for the unknown calibration inputs. Traditional use of simulators

assumes that variable inputs, x, are measured without error, unknown calibration

inputs, θ, can be specified without error, and there is no inadequacy in the resulting

simulator output η(x, θ), so this is a prediction of the real process.

Sensitivity analysis (SA) is the study of how changes in individual input para-

meters, xi or θi, affect the simulator output η(x, θ), the aim being to identify those

parameters to which the simulator is particularly sensitive or insensitive (Saltelli

et al., 2000). Local SA amounts to finding partial derivatives of the simulator

output with respect to the input, and in global SA the input is varied over a range

(Kennedy et al., 2002).

Uncertainty analysis (UA) is the study of how uncertainty on one or more inputs

translates to uncertainty in the simulator output. In the standard Monte Carlo

approach a probability distribution is defined on the inputs, then a sample is drawn

from this distribution and the simulator is run for each sample point. The outputs

form a sample from the simulator output distribution (Kennedy and O’Hagan,

2001). UA accounts for parametric uncertainty and variability.

Now suppose we have an observation z of ξ, then we can make inference about

the values of the unknown calibration inputs θ and the simulator inadequacy by

comparing the simulator output with z. Using what we have learnt we can use

the simulator to predict a future event with variable inputs x′ (see Chapter 5 for

details of the Bayesian approach).

Calibration is the act of making inference about the values of the calibration in-

puts θ on the basis of how well the corresponding simulator output η(x, θ) fits the

observed data z. Traditionally, calibration amounts to identifying the best fitting

value and using this for future predictions without any quantification of parametric

uncertainty or simulator inadequacy (Kennedy and O’Hagan, 2001). In a Bayesian

sense calibration means updating the prior for the calibration inputs as a result

of comparing the simulator output with observations (Campbell, 2002). A major

difficulty with calibration is in the specification of the measure of fit which should,
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from the Bayesian point of view, be the likelihood of the data. Calibration ac-

counts for observation error, residual variation and simulator inadequacy through

the measure of fit (Kennedy and O’Hagan, 2001).

As discussed in Section 2.1, simulators are truncations of reality so the true val-

ues of the calibration inputs (e.g. Manning’s n) will not be physically meaningful.

Whilst the measurement error can be quantified for measured physical parame-

ters, the uncertainty due to unrepresented processes in the simulator cannot be

quantified. If the latter error is large it is better to calibrate the input if the input

is stationary between the event we are calibrating on and the event we want to

predict. The measured value and measurement error can be used to inform the

prior distribution of the calibration input. The uncertainty in a calibrated input

includes implicitly the uncertainty due to unrepresented processes and observation

error (Campbell, 2002); the larger the difference between the value of a calibrated

input and the measured value the more significant the observation error or lack of

process representation.

A calibrated prediction is a prediction with a quantification of uncertainty taken

from calibration on a past event. The uncertainty comes from the uncertainty in

the calibrated inputs and from the simulator inadequacy. Calibration inputs are

assumed stationary between the event we calibrate on and the event we wish to

predict. For this to be true all the processes accounted for explicitly or implic-

itly by the calibrated input must be stationary (Romanowicz and Beven, 2003).

This is rarely the case so it is important to include the uncertainty about the cal-

ibration inputs in prediction, rather than just taking the best fitting value. Some

methods account for the uncertainty in the calibrated inputs but not the simulator

inadequacy, and so the resulting predictions correspond to the simulator output

and not the true value of the real process (e.g. generalised likelihood uncertainty

estimation).

In the following two sections we consider two of the main approaches to calibra-

tion that are indicative of the numerous approaches available. The first is a formal

Bayesian methodology and the second a non-probabilistic approach.
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4.2.2 Bayesian Analysis of Computer Code Output

The fundamental idea behind Bayesian analysis of computer code output

(BACCO) is to build a statistical emulator of the computer code output (see

O’Hagan, 2004a). Using a statistical emulator of the computer code output means

fewer simulator runs are required for analysis of the code (e.g. UA and SA), which

makes the method very useful in situations where the simulator takes a long time

to run.

The aim of the BACCO method is to describe the accuracy of computer codes

statistically and even correct for error in the simulator through the simulator inade-

quacy function. O’Hagan (2004a) argues that the inputs and simulator inadequacy

are epistemic uncertainties (see Section 4.1) and therefore require a Bayesian,

rather than frequentist, treatment.

The use of emulators of computer code output was first devised in the design and

analysis of computer experiments (DACE) work summarised in Sacks et al. (1989).

The simulator output η(x) is modelled as a random function, the prior for η(x)

is a Gaussian process, and then updating using runs of the simulator we obtain

a posterior for η(x). The resulting statistical emulator can predict η(x) at un-

tried x values. Statistical analysis of computer code outputs (SACCO) generalised

DACE to interpolation, sensitivity analysis, uncertainty analysis, calibration and

simulator uncertainty (Kennedy et al., 2002). BACCO brings together the ideas

of SACCO in a unified framework.

In BACCO the random functions are typically Gaussian processes. A random

function f : R
n → R is a Gaussian process if, for all k ∈ N and xi ∈ R

n for

i = 1, . . . , k, the joint distribution of f(x1), . . . , f(xk) is multivariate normal. For

example, for all x ∈ R
n, f(x) is normal (Hankin, 2005). The error in the emulator

is zero where the simulator has been run and elsewhere the covariance is chosen

to ensure that f(x) and f(x′) are close if x and x′ are. It is this assumption

of smoothness encoded in the emulator that allows sensitivity and uncertainty

analysis to be performed with far fewer runs (Oakley and O’Hagan, 2002, 2004).

Also UA and SA methods using a statistical emulator account for code uncertainty.
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One problem with Gaussian processes is that uncertainty increases rapidly if we

try to extrapolate outside the range of the data (O’Hagan, 2004a).

Kennedy and O’Hagan (2001) introduces the BACCO approach to calibration

which is the first attempt to take account of all sources of uncertainty explicitly.

Given observations of the real process the difference between the simulator output

and reality is modelled by a Gaussian process called the simulator inadequacy

function. We perform Bayesian calibration to learn about the calibration inputs

and the simulator inadequacy function. Consequently, the simulator output can

be corrected using the simulator inadequacy function, this can then be used to

improve predictions or to inform simulator development (O’Hagan, 2004a).

By augmenting the variable inputs x with a parameter which indexes the pix-

els, the simulator output can be written as a scalar η(x, θ). The true value

of the real process is written ξ(x) and we make N simulator runs to obtain

y = (y1, . . . , yN) where yi = η(xi, θi). The calibration data consist of n obser-

vations z = (z1, . . . , zn), where zi is an observation of ξ(x⋆
i ) for known variable

inputs x⋆
i which need not be the same as the points where the simulator is run.

Kennedy and O’Hagan (2001) suggest the following model

zi = ξ(xi) + ei = ρη(xi, θ) + δ(xi) + ei (4.1)

where ei ∼ N (0, λ) is the observation error and residual variation for the ith obser-

vation, ρ is an unknown regression parameter, and δ(·) is the simulator inadequacy

function. Calibrated predictions are made using the marginal posterior for reality

ξ(x) given the simulator runs y and observed data z, this is obtained by integrat-

ing the posterior with respect to all parameters and therefore takes account of all

uncertainties. However, this is rarely practical so the hyperparameters ρ, λ and

the parameters of the covariance for the Gaussian processes for η(·, ·) and δ(·) are

fixed. Consequently, this approach is not fully Bayesian and does not fully account

for observation error, simulator inadequacy and code uncertainty.

In the BACCO approach to calibration we simultaneously fit a statistical emula-

tor to the data and learn about the calibration inputs and the simulator inadequacy

function. The simulator inadequacy function is essential for calibrated prediction
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but causes the true value of the calibration inputs to be less physically meaningful

because the majority of the fitting is done by this simulator inadequacy function

(Kennedy et al., 2002). The fundamental assumption of BACCO is that the simu-

lator output is a smooth continuous function of its inputs, whilst a binary indicator

of inundation is not a smooth function of position, water depth is and it may be

possible to model this quantity using BACCO. More realistic simulator inadequacy

functions need to be developed, for example Goldstein and Rougier (2004) look

at the relationship between simulator output and reality. Computationally this

approach to calibration is very demanding, requiring the inversion of a variance

matrix with dimension given by the number of simulator runs (O’Hagan, 2004a).

We have described BACCO in depth because it is well established and encap-

sulates most of the features present in all Bayesian approaches to calibration and

calibrated prediction. However, there are many other Bayesian methods and we

now summarise a few.

Bates et al. (2003) apply Bayesian calibration to obtain the posterior for the

calibration inputs, the corresponding uncertainty on the simulator output is found

by uncertainty analysis. Simulator inadequacy is not accounted for and no attempt

is made to predict the true value of the real process.

Bayes linear methods use expectation rather than probability as a primitive

and provide a way of tackling problems when standard Bayesian analysis is pro-

hibitively complex (see Goldstein, 1995, for an introduction). Our prior beliefs are

quantified via expectations, variances and covariances which are adjusted given

data. Bayes linear calibration is described in Craig et al. (1996) and calibrated

prediction in Craig et al. (2001) and Goldstein and Rougier (2004).

A Bayesian forecasting system (BFS) for short-term probabilistic river stage

forecasts is described by Krzysztofowicz (2002) using a deterministic hydraulic

simulator with a probabilistic precipitation forecast input. The effects of precip-

itation uncertainty and hydrologic uncertainty on the river stage are quantified

separately, then they are integrated together using Bayesian theory.

Bayesian total error analysis (BATEA) for environmental simulators is a method
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for learning about the hydrologic calibration inputs and variable inputs from obser-

vations of the simulator output and the variable inputs (Kavetski et al., 2002). The

observations are assumed to be independent given the true value of the variable

inputs. There is no obvious advantage over using the observation of the variable

input to specify the prior and then updating this for the posterior.

4.2.3 Generalised Likelihood Uncertainty Estimation

Beven and Binley (1992) proposed generalised likelihood uncertainty estimation

(GLUE) as an alternative to the traditional search for an optimum parameter

set, after identifying in Binley and Beven (1991) that the optimum is rarely the

same between calibration and prediction events, but the response surfaces may

be similar. (In the Bayesian setting the response surface is the posterior for the

calibration inputs.) The philosophy underpinning GLUE is equifinality : multiple

simulator structures and parameter sets may be equally acceptable as simulators

of reality (Beven, 2006). GLUE is described as a way of refining hypotheses about

simulator structure and parameter sets by associating generalised likelihood values

and rejecting non-behavioural simulators. A behavioural simulator is one that

agrees with the observed data to a degree specified by the modeller, and the

generalised likelihood replaces the standard likelihood and is not required to satisfy

the conditions of probabilistic inference.

We assume variable inputs x are fixed, although GLUE can be extended to ac-

count for parametric variability (Kennedy and O’Hagan, 2001). A prior is specified

for the calibration inputs, p(θ), and is usually assumed to be uniform on a feasi-

ble region but not required to be so. The simulator is run for a sample from the

prior, θ(1), . . . , θ(M), to obtain a simulator output sample, y(1), . . . ,y(M), where

y(i) = η(x, θ(i)). A generalised likelihood, p⋆(z|θ), is defined which must increase

monotonically as the similarity between the simulator output, y = η(x, θ), and

observed data, z, increases. Unlike the standard likelihood the generalised like-

lihood is not required to be proportional to the conditional distribution of the

observed data given the simulator output, p(z|η(x, θ)). We will elaborate on the

implications for probabilistic inference shortly. Non-behavioural simulations are
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rejected if the generalised likelihood is less than some user-defined threshold p′, so

q⋆(z|θ) =





p⋆(z|θ) if p⋆(z|θ) > p′

0 otherwise.

The (generalised) posterior for the calibration inputs is

p⋆(θ|z) ∝ q⋆(z|θ)p(θ), (4.2)

and for the prediction event with variable inputs x′ the simulator output y′ =

η(x′, θ) is weighted by p⋆(y′|z) = p⋆(θ|z).

GLUE is exactly a Bayesian analysis if the generalised likelihood is a standard

likelihood and the rejection of non-behavioural simulators step is removed (see for

example Romanowicz et al., 1996). In this case Equation (4.2) is the standard

Bayesian formula for the posterior given the likelihood and prior.

The generalised likelihood is a feature of GLUE and is argued for in preference to

the Bayesian approach on the basis of equifinality and ease of specification (Beven,

2006). However, equifinality is not a new concept to statistics where it is known

as unidentifiability, and is not outside the capabilities of Bayesian statistics where

it is trivially possible for the posterior p(θ|z) to take the same value for different

values of the calibration inputs θ. Bayesian inference does encode the existence

of a true value of the calibration inputs (Spiegelhalter et al., 2002), but this does

not prevent unidentifiability. Whilst it is true that likelihood specification can be

very tricky, Mantovan and Todini (in press) have shown that using a generalised

likelihood leads to incoherence. A consequence of incoherence is that the addition

of more data does not improve the value of the analysis.

There is typically no clear demarcation between behavioural and non-

behavioural simulations. The threshold p′ is usually selected based on the as-

sumption that errors in simulation are similar to errors in observation, but this

often results in all simulations being rejected so no prediction can be made. Beven

(2006) interprets this total rejection as indicative of conceptual, structural or data

errors, but it may equally be the result of setting the threshold too high. Removing

any simulations means we are not fully representing parameter uncertainty. We
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would rather provide probabilistic predictions to flood engineers on which they

may make decisions about simulator adequacy.

Unlike the more rigorous approaches to calibration, GLUE has been applied to

flood inundation modelling. Romanowicz et al. (1996) use continuous observations

of water level for cross-sections to calibrate and make calibrated predictions. They

explicitly include simulator inadequacy and use a proper likelihood so the analysis

is strictly Bayesian. The simulator inadequacy is assumed to be the same for

calibration and prediction. Romanowicz and Beven (2003) calibrate on inundation

widths extracted from an observation of maximum inundation extent for cross-

sections. The generalised likelihood for a cross-section is 1 if the predicted width

is within 30 m of the observed width, and decreases to 0 away from this region.

Aronica et al. (2002), Bates et al. (2004), Hunter et al. (2005) and (Pappenberger

et al., 2005) calibrate directly on observations of flood extent in the form of binary

images, rather than transform this data to inundation widths. Table 4.1 shows

the possible combinations of simulator output and observed data for pixel i. The

generalised likelihood is based on a function of the total number of true-negatives,

false-negatives, true-positives and false-positives, called a skill score (see Jolliffe

and Stephenson, 2003, page 8). Let ns,t =
∑n

i=1 1[yi = s]1[zi = t] where s, t ∈
{−1, 1}, then the most frequently used skill score is

p⋆(z|θ) =
n1,1

n1,1 + n1,−1 + n−1,1

. (4.3)

Many others are discussed in Hunter et al. (2005). GLUE provides so-called maps

of flood probability, for each pixel

p⋆(ξ′i = 1|z) =

∫
1[y′i = 1]p⋆(θ|z) dθ (4.4)

where y′i = ηi(x
′, θ) (Aronica et al., 2002). However, even if a proper likelihood

is used so p⋆(θ|z) is a proper posterior, Equation (4.4) approximates p(y′i = 1|z)

because it does not take account of simulator inadequacy. In equating future pre-

dictions with reality, Equation (4.4) implies that there is no simulator inadequacy

after calibration, which is not true. Therefore when comparing our method to

GLUE it will be appropriate to compare our inference about y′ to these maps of

flood probability.
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yi zi

−1 1
−1 true-negative false-negative
1 false-positive true-positive

Table 4.1: Binary cross-classifications for simulator output yi and observed data
zi for pixel i.

Aronica et al. (2002) apply this methodology to the Buscot dataset described in

Section 2.4. Figure 4.1 show the results of the analysis, the response surface shows

an insensitivity to floodplain friction, θf , and the maps of flooding probability

with and without non-behavioural simulations show how uncertainty on calibration

inputs induces uncertainty on simulator output.

There are numerous other non-probabilistic approaches to calibration and cal-

ibrated prediction but we have focused on GLUE because it has been applied

to flood inundation simulation. Alternatives include multi-objective calibration

(Gupta et al., 1998; Yapo et al., 1998). This requires the simultaneous optimisa-

tion of a number of objective functions with respect to the calibration parameters,

the set of solutions is called the Pareto set. Yapo et al. (1998) claim that because

individual objectives relate to different things they cannot be combined to form

an overall objective. However, in the Bayesian approach this can all be included

in the prior and likelihood.

4.2.4 The Way Forward for Calibration and Calibrated

Prediction

For any calibration procedure it is necessary to define a function which judges

how well the simulator reproduces the observed data. In Bayesian calibration

the function is the likelihood of the observed data given the simulator output, in

GLUE it is the generalised likelihood, and in multi-objective calibration it is the

set of objective functions. The specification of this function can be very difficult

if the Bayesian paradigm is adopted and the laws of probability must be satisfied.

It is for this reason that less rigorous approaches, such as GLUE, have proved so

popular. The propriety of this function determines the success of the calibration

65



Chapter 4. Handling Uncertainty in Flood Inundation Simulators

(a) Response surface.

(b) Map of flood probability, p⋆(ξ′i = 1|z).

(c) Map of flood probability, p⋆(ξ′i = 1|z), when non-behavioural
simulations, characterised by p⋆(z|θ) < 0.7, are removed.

Figure 4.1: Results of GLUE analysis for the Buscot dataset using the skill score
from Equation (4.3), shown with and without non-behavioural simulations. Images
reproduced with kind permission of Aronica et al. (2002).
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procedure. The need for a better model for simulator inadequacy is acknowledged

by Kavetski et al. (2002) for BATEA, and by O’Hagan (2004a) for BACCO.

Although we attribute the popularity of non-probabilistic methods to their ac-

cessibility, not all information in hydraulic applications is probabilistic and there-

fore recourse should be made to non-probabilistic approaches (Hall and Anderson,

2002; Hall, 2003). The important point is that non-probabilistic approaches should

still have a rigorous grounding in mathematics. Alternative uncertainty methods

developed through various weakening of Kolmogorov’s axioms of probability in-

clude Chequet’s theory of capacities, random set theory, evidence theory, fuzzy

set theory, possibility theory and Walley’s theory of imprecise probabilities (see

Hall, 2003, for a review). For example Ben-Haim (2001) describes information gap

theory for handling ignorance which is not probabilistic. Methods which cannot

be described within any uncertainty framework are unlikely to be useful.

Although the value of each of these methods is appreciated, we are of the opin-

ion that the Bayesian paradigm has not been exhausted in the flood inundation

context.

In this chapter we have classified flood inundation simulator uncertainties and

reviewed calibration methods. In the next chapter we will describe our Bayesian

framework for calibration and calibrated prediction. This will be illustrated using

a directed acyclic graph (DAG) which allows the problem to be broken down

into smaller, more manageable, parts. Thus the specification of an appropriate

likelihood model can be focused on.
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Bayesian Framework for
Calibration of Flood Inundation
Simulators Conditioned on an
Observation of Flood Extent

In this chapter we introduce a hierarchical model for Bayesian calibration of flood

inundation simulators conditioned on an observation of flood extent. We start by

illustrating our hierarchical model using a directed acyclic graph. We show how

the tasks of calibration and calibrated prediction can be carried out in relation to

the specified hierarchical model. The most problematic issue in the framework is

the specification of the likelihood of the observed flood extent given a simulation of

flood extent. For the purpose of demonstration we propose a very simple likelihood

model and work through an example. In the following chapters more complex

likelihood models, which better represent the data, will be developed.

5.1 Directed Acyclic Graph for Flood Inunda-

tion Simulator Calibration

In Section 4.2 we reviewed methods for handling uncertainty in complex com-

puter models, including sensitivity analysis, uncertainty analysis, calibration and

calibrated prediction. Methods have been developed by environmental scientists

interested in quantifying the uncertainty in their simulators and also by applied

statisticians. Bayesian methods are prominent in both communities, combining
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probabilistic rigour with the ability to use subjective beliefs via a prior distribu-

tion.

Bayesian analysis of computer code output (BACCO) accounts for all sources

of uncertainty explicitly and, in this sense, is the most developed uncertainty

handling methodology. However, fundamental to BACCO is the use of Gaussian

processes, in emulating the complex computer code output and for simulator in-

adequacy (see Section 4.2.2). In Section 4.2.4 we identified the need for a realistic

likelihood model for the observed data given the simulator output, it therefore

seems inappropriate to restrict our research to Gaussian processes. Also BACCO

is not fully Bayesian because the hyperparameters are set to their posterior means

for prediction, whereas for full Bayesian analysis they should be integrated out

(see Kennedy and O’Hagan, 2001).

Rather than subscribe to an existing calibration methodology we will present

our own hierarchical model for Bayesian calibration and calibrated predication.

The simulator inputs can be divided into calibration inputs, θ, and variable

inputs, x. For our purposes, the calibration inputs are the channel friction, θc,

and floodplain friction, θf , and the variable input which changes between the

calibration and prediction events is the inflow discharge. We assume the topog-

raphy is measured without error and is constant between events. For a given

parameter set (x, θ) the deterministic output of the flood inundation simulator,

η(x, θ) ∈ {−1, 1}n, is a binary array of size n = r × c where r is the num-

ber of rows and c is the number of columns. Pixels take the value 1 if wet and

−1 if dry. Pixel i is located in row i mod r and column ⌊i/r⌋, where ⌊u⌋ is the

largest integer not greater than u, and rows and columns are numbered from

0. The true flood extent on the binary array is denoted ξ ∈ {−1, 1}n (see Sec-

tion 4.1.3 for the definition of a true process value), and the observation of this

flood extent is denoted z ∈ {−1, 1}n. For the calibration event, x, the simulator is

run for a sample θ(1), . . . , θ(K) of calibration input values to obtain y(1), . . . ,y(K)

where y(i) = η(x, θ(i)). For the same set of calibration input values the simu-

lator is run for the event we want to predict, x′, to obtain y′(1), . . . ,y′(K) where
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x x′θ

y y′

ξ ξ′

z

Observed Event

Prediction

Figure 5.1: A directed acyclic graph (DAG) for Bayesian calibration of flood in-
undation simulators conditioned on an observation of flood extent.

y′(i) = η(x′, θ(i)). We want to make inference about the flood extent in the future

given our simulator and an observation of a past event.

Figure 5.1 shows our DAG for calibration and calibrated prediction. It encodes

the uncertainties and dependencies in calibrating flood inundation simulators on an

observation of flood extent, z, and making calibrated predictions of the true flood

extent in a future event, ξ′. We have endeavoured to account for the uncertainties

described in Section 4.1. We learn about the parametric uncertainty associated

with the unknown calibration inputs by assigning a prior p(θ). Then, given the

observation, z, we can calculate the posterior p(θ|z). If the values of the variable

inputs are not fully known we can express the parametric variability through a

prior, p(x). The simulator inadequacy is encoded in the likelihoods, p(ξ|y) and

p(ξ′|y′). To build a statistical emulator of the flood inundation simulator we can
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express the code uncertainty in p(y|x, θ). The residual variability and observation

error are included in p(z|ξ).

We have assumed that the calibration inputs, θ, are stationary between the

calibration and prediction events, x and x′. However, the calibration inputs are

the floodplain friction, θf , and channel friction, θc, which we do not expect to be

stationary between events of different magnitudes because the frictional properties

of land change when it is inundated. Without further observations or information

about how friction changes between events of different magnitude, we must assume

stationarity, but this remains a concern. If we had more time we might have

elaborated the model (e.g. by allowing θ to vary spatially) to get round this

problem.

Bayesian calibration amounts to finding the posterior for the calibration inputs

which is done by bottom-up reasoning,

p(θ|z) ∝
∑

ξ

∑

y

∫
p(z, ξ,y,x, θ) dx,

=
∑

ξ

∑

y

∫
p(z|ξ)p(ξ|y)p(y|x, θ)p(x)p(θ) dx, (5.1)

using the DAG. Calibrated predictions based on the posterior for the calibration

parameters is done by top-down reasoning,

p(ξ′|z) ∝
∑

ξ

∑

y

∑

y′

∫∫∫
p(z, ξ, ξ′,y,y′,x,x′, θ) dx dx′ dθ,

=
∑

y′

∫∫
p(ξ′|y′)p(y′|x′, θ)p(x′)p(θ|z) dx′ dθ, (5.2)

using the DAG.

We do not attempt to emulate the flood simulator output and therefore remove

the code uncertainty component from the DAG. This does not necessitate a change

to the graph because DAGs can encode deterministic relationships. We take

p(y|x, θ) =





1 if y = η (x, θ),

0 otherwise,

and similarly for y′. We retain the y and y′ nodes to make it clear that the true

flood extent, ξ, is modelled as dependent on the simulator output, y, and not the

inputs, x and θ.

71



Chapter 5. Bayesian Framework for Calibration

Parametric variability may play a significant role in calibration and calibrated

prediction but it has been researched extensively for environmental applications

(see Kavetski et al., 2002, for a review of approaches) and would add significantly

to the computation expense of our method. Therefore, in order to focus on other

components of our framework we will not consider parametric variability and will

remove the x and x′ nodes from the DAG.

We cannot calculate the marginal posterior distributions, p(θ|z) and p(ξ′|z),

because we are not able to perform the summations and integrals in Equations (5.1)

and (5.2). Instead we use MCMC to generate an estimate sample from the marginal

posterior, p(θ|z), using the unnormalised density (see Section 3.2).

In MCMC algorithms the parameters are updated many times, but each time

θ changes we must run the flood inundation simulator to obtain y = η (x, θ) and

y′ = η (x′, θ), because we are not using an emulator. This is impractical because

each simulation will take at least a few minutes if not hours or days depending on

the scale of the problem.

Instead of updating θ in the MCMC algorithm, we discretize θ by taking a

sample θ(1), . . . , θ(M) from the prior, p(θ), and running the simulator to obtain

y(m) = η
(
x, θ(m)

)
and y′(m) = η

(
x′, θ(m)

)
for m = 1, . . . ,M . MCMC methods in

which the index m is updated are feasible because the flood inundation simulator

outputs have been stored and can be reused.

We will assume there is no observation error, so z = ξ and z′ = ξ′, and we

remove the nodes corresponding to the true flood extents, ξ and ξ′, from the

DAG. The flood extent is delineated from SAR imagery using a region growing

algorithm (see Horritt, 1999; Horritt and Bates, 2002, and Section 2.3). The error

in shoreline delineation is relatively small but occasionally fields are misclassified as

wet because sparsely vegetated areas have similar backscatter to water. This error

can be removed manually by comparing the shoreline to the topography. Another

way to interpret this assumption is that we are lumping together observation error,

residual variability and simulator inadequacy, and our calibrated prediction will

be of a future observation rather than a future truth. If it is acceptable to base
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m

φ

y y′

z z′

Figure 5.2: Revised DAG for the Bayesian analysis of flood inundation simulators
conditioned on an observation of flood extent

decisions on observations of flood extent then predictions of a future observation

seem justified. However, lumping together observation error, residual variability

and simulator inadequacy limits the attraction of the framework because they are

quite different sources of uncertainty. With further observations future research

might consider separating these sources of uncertainty again, but for now this

assumption allows us to focus on one aspect of the framework.

We need to define the likelihood of the observed data given the simulator output

for the calibration and prediction events, p(z|y) and p(z′|y′). Let φ be the vector

of likelihood parameters, then assume the same distribution for p(z|y,φ) and

p(z′|y′,φ), where φ is stationary between events. Now by calibrating on the

observed data, z, we learn about not only the parametric uncertainty, p(θ|z), but

also the simulator inadequacy, p(φ|z).

Our revised hierarchical model is illustrated in Figure 5.2. To complete the

model we must specify conditional (or marginal) distributions at each node. For

the simulation index, m, of the sample θ(1), . . . , θ(M) from p(θ), we take a discrete

uniform prior, p(m) = 1/M (note that our prior knowledge is reflected in the

values of the sample through the prior on θ). The nodes corresponding to y and

y′ are only included for completeness because y|m and y′|m are deterministic, the
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distributions can be written

p(y|m) =





1 if y = η
(
x, θ(m)

)

0 otherwise,
(5.3)

and

p(y′|m) =





1 if y′ = η
(
x′, θ(m)

)

0 otherwise.
(5.4)

The remaining distributions p(z|y,φ), p(z′|y′,φ) and p(φ) will prove somewhat

harder to specify. The prior p(φ) depends on the likelihood we chose for p(z|y,φ)

and p(z′|y′,φ).

The likelihood is a model for a binary array, z, conditional on the value of

another binary array, y. We expect the error in predicting the value of pixel i will

be related to the error in predicting the value of the pixels in some neighbourhood of

pixel i, therefore the likelihood should account for spatial dependence. We expect

the error in predicting the value of pixel i will be greater at the flood boundary

than in the channel or on the floodplain away from the flood boundary, therefore

the likelihood should account for heterogeneity. Finally, we expect the observed

value of pixel i will be related, not only to pixel i in the simulator output, but

also to the neighbours of pixel i in the simulator output, therefore the likelihood

should account for blur.

The equations for calibration and calibrated prediction become

p(m|z) ∝
∫
p(z|y(m),φ)p(φ) dφ, and

p(z′|z) ∝
M∑

m=1

∫
p(z′|y′(m),φ)p(φ, m|z) dφ.

5.2 The Binary Channel Model

The observed data, z, and the simulator output, y, are binary arrays, so for the

likelihood we need a model for a binary array conditional on the value of another

binary array. The likelihood should include spatial dependence, heterogeneity

and blur and this makes the likelihood specification a non-trivial problem. The

development of a suitable likelihood model will form a major part of this thesis.
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In this section we introduce the binary channel (BC) model, which is a very

simple model for binary regression. It does not account for spatial dependence,

heterogeneity or blur. However, the posteriors for calibration, p(θ|z), and cali-

brated prediction, p(z′i = 1|z), can be found analytically if we use the BC model

as the likelihood. We will demonstrate our Bayesian framework using the BC

model and then explain why it is inadequate for our purposes. The likelihood

models discussed in future chapters can all be motivated as extensions of this

simple model.

The BC model is motivated by the transmission of a binary digit over a com-

munication channel in which there may be some interference. Suppose yi is the

binary digit input and zi the binary digit output, then

p(zi = 1|yi = 1, α) = α, (5.5)

p(zi = −1|yi = −1, β) = β, (5.6)

and zi are conditionally independent given y, for i = 1, . . . , n. Comparing to the

DAG in Figure 5.2 we see that φ = (α, β). To complete our Bayesian framework

we need to define a prior for p(φ) = p(α, β). Both of the hyperparameters, α and

β, are constrained to lie in [0, 1], and because of the structure of the BC model

we will find it convenient to take α ∼ beta(a, b) and β ∼ beta(c, d) independently,

where a, b, c, d are known constants. It is this combination of likelihood and prior

that means the marginal posteriors can be found analytically.

Let n
(m)
r,s =

∑n
i=1 1[zi = r, y

(m)
i = s] for r, s ∈ {−1, 1} and B(s, t) =

Γ(s)Γ(t)/Γ(s+t) be the Beta function for real numbers s and t. Then the posterior

for the parameters m, α and β given z is

p(m,α, β|z) ∝ p(z|y(m), α, β)p(α)p(β)p(m),

= αn
(m)
1,1 (1 − α)n

(m)
−1,1βn

(m)
−1,−1(1 − β)n

(m)
1,−1

αa−1(1 − α)b−1

B(a, b)

βc−1(1 − β)d−1

B(c, d)
,

∝ αn
(m)
1,1 +a−1(1 − α)n

(m)
−1,1+b−1βn

(m)
−1,−1+c−1(1 − β)n

(m)
1,−1+d−1.

The normalising constant can be calculated analytically, let q(m,α, β|z) be the
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unnormalised density, then the normalising constant is

M∑

m=1

∫ 1

0

∫ 1

0

q(m,α, β|z)dαdβ =

M∑

m=1

B
(
n

(m)
1,1 + a, n

(m)
−1,1 + b

)
B
(
n

(m)
−1,−1 + c, n

(m)
1,−1 + d

)
.

To find the marginal posterior for the simulation index, m, we integrate the joint

posterior with respect to the likelihood parameters, α and β,

p(m|z) =

∫ 1

0

∫ 1

0

p(m,α, β|z) dα dβ,

=
B
(
n

(m)
1,1 + a, n

(m)
−1,1 + b

)
B
(
n

(m)
−1,−1 + c, n

(m)
1,−1 + d

)

∑M
m⋆=1 B

(
n

(m⋆)
1,1 + a, n

(m⋆)
−1,1 + b

)
B
(
n

(m⋆)
−1,−1 + c, n

(m⋆)
1,−1 + d

) . (5.7)

The marginal posterior for α and β is found similarly,

p(α, β|z) =
M∑

m=1

p(m,α, β|z),

=

∑M
m=1 α

n
(m)
1,1 +a−1(1 − α)n

(m)
−1,1+b−1βn

(m)
−1,−1+c−1(1 − β)n

(m)
1,−1+d−1

∑M
m=1 B

(
n

(m)
1,1 + a, n

(m)
−1,1 + b

)
B
(
n

(m)
−1,−1 + c, n

(m)
1,−1 + d

) .

When the arguments are large the Beta function, B(·, ·), will be very small. In

our case the arguments relate to the size of the binary array so will be very large.

Therefore computation of the joint and marginal posteriors is complicated because

the computer may be unable to represent the small value of the Beta function, so

will equate it to zero. This is called underflow.

The marginal posterior for the simulation index, m, can be found by computing

the ratio p(m|z)/p(m⋆|z) for m = 1, . . . ,M and some reference simulation m⋆.

This ratio can be computed because terms cancel in the ratio of the Beta functions.

To see this, replace the Beta functions by their Gamma function representation,

then p(m|z)/p(m⋆|z) is the product of ratios of Gamma functions with arguments

separated by an integer. Let x be a real number and n be a positive integer, then

using Γ(x) = (x− 1)Γ(x− 1) we find

Γ(x+ n)

Γ(x)
= (x+ n− 1)(x+ n− 2) · · · (x+ 1)x.

We cannot compute the joint posterior, p(m,α, β|z), or the marginal posterior,

p(α, β|z), but conditional on z and m

p(α, β|z, m) =
αn

(m)
1,1 +a−1(1 − α)n

(m)
−1,1+b−1

B
(
n

(m)
1,1 + a, n

(m)
−1,1 + b

) βn
(m)
−1,−1+c−1(1 − β)n

(m)
1,−1+d−1

B
(
n

(m)
−1,−1 + c, n

(m)
1,−1 + d

) ,
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so p(α, β|z, m) = p(α|z, m)p(β|z, m), and

α|z, m ∼ beta
(
n

(m)
1,1 + a, n

(m)
−1,1 + b

)
and

β|z, m ∼ beta
(
n

(m)
−1,−1 + c, n

(m)
1,−1 + d

)
.

It makes sense that α and β are independent given m because the number of

positives and the number of negatives are fixed given m, and α and β correspond to

positives and negatives respectively. The expectations and variances can be found

from standard formulae and because of independence they are very informative

about p(α, β|z, m). The distribution p(α, β|z, m) is of interest because the overlap

for different m indicates whether a simulation index update in a simple MCMC

algorithm could be accepted.

Using the identities for conditional expectations and variances we can calculate

the marginal posterior expectation and variance of α and β, for example

E (α|z) =
M∑

m=1

E (α|z, m) p(m|z)

Var (α|z) =

M∑

m=1

Var (α|z, m) p(m|z)

+
M∑

m=1

E (α|z, m)2 p(m|z) −
(

M∑

m=1

E (α|z, m) p(m|z)

)2

.

It is typically difficult to calculate the probability of flooding for each pixel

because we need to integrate out all other parameters, but using the BC model
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zi y
(m)
i

-1 1

−1 n
(m)
−1,−1 n

(m)
−1,1 n−1,·

1 n
(m)
1,−1 n

(m)
1,1 n1,·

n
(m)
·,−1 n

(m)
·,1 n

Table 5.1: Cross-classification counts for the observed data, z, and a simulation,
y(m), where, for example, n−1,· = n

(m)
−1,−1 + n

(m)
−1,1.

with beta priors this is simple,

p(z′i = 1|z)

=

M∑

m=1

∫ 1

0

∫ 1

0

p(z′i = 1|y′(m), α, β)p(m,α, β|z) dα dβ,

=
M∑

m=1

∫ 1

0

∫ 1

0

(
α1[y

′(m)
i = 1] + (1 − β)1[y

′(m)
i = −1]

)
p(m|z)p(α, β|m, z) dα dβ

=

M∑

m=1

(
E (α|m, z)1[y

′(m)
i = 1] + E (1 − β|m, z)1[y

′(m)
i = −1]

)
p(m|z)

=
M∑

m=1

(
n

(m)
1,1 + a

n
(m)
1,1 + a+ n

(m)
−1,1 + b

1[y
′(m)
i = 1]

+

(
1 − n

(m)
−1,−1 + c

n
(m)
−1,−1 + c+ n

(m)
1,−1 + d

)
1[y

′(m)
i = −1]

)
p(m|z). (5.8)

Table 5.1 shows the cross-classification counts for the observed data, z, and a

simulation, y(m). We have only one observation so the number of pixels observed

wet, n1,·, and observed dry, n−1,·, do not change. The only way the counts n
(m)
−1,−1,

n
(m)
−1,1, n

(m)
1,−1 and n

(m)
1,1 can change is if the simulation index, m, changes.

The values of α and β determine how false-positives and false-negatives are

penalised in the BC model. Suppose there are more true-positives in simulation

y(2) than simulation y(1), n
(2)
1,1 > n

(1)
1,1, then we expect there to be more false-

positives in y(2) than y(1), n
(2)
−1,1 > n

(1)
−1,1 since this is true empirically for the M

runs, see Figure 5.3. Let the ratio of the increase in false-positives to the increase

in true-positives be s, so n
(2)
−1,1 − n

(1)
−1,1 = s(n

(2)
1,1 − n

(1)
1,1), and suppose α and β are

fixed, then

p(y(2)|z)

p(y(1)|z)
=

(
α

1 − β

)n
(2)
1,1−n

(1)
1,1
(

1 − α

β

)s(n
(2)
1,1−n

(1)
1,1)

. (5.9)
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Figure 5.3: Plots showing the relationship between falses and trues for the Buscot
dataset.

We want to identify the range of s for which p(y(2)|z)/p(y(1)|z) < 1 for a given α

and β. From Equation (5.9) we find

p(y(2)|z)

p(y(1)|z)
< 1 if





s > s⋆ and β > 1 − α

s < s⋆ and β < 1 − α,

where

s⋆ =
log(α) − log(1 − β)

log(β) − log(1 − α)
. (5.10)

For the special case α = β > 0.5, the posterior ratio p(y(2)|z)/p(y(1)|z) < 1 if

s > 1. As an example, take α = 0.9 and β = 0.5 then s⋆ = 0.365, so if the ratio

of the increase in false-positives to the increase in true-positives, s, is greater than

0.365 then the posterior probability of y(2) is less than that of y(1).

For the Buscot dataset (see Section 2.4) the rate of increase of false-positives with

true-positives, see Figure 5.3(a), changes significantly at a point corresponding to

the optimum simulation, either side of this point the rate is almost constant. This is

because past the optimum simulation it is probable that an increase in the number

of positives, n·,1, will result in more false-positives, n−1,1, than true-positives, n1,1.
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m n
(m)
1,1 n

(m)
−1,1 n

(m)
−1,−1 n

(m)
1,−1

110 482 108 2997 61
91 497 156 2949 46
349 288 45 3060 255

Table 5.2: Cross-classification counts for the simulations shown in Figure 5.4.

5.3 Buscot Example

In this section we use the Buscot dataset introduced in Section 2.4 to illustrate our

Bayesian framework for calibration and calibrated prediction using a BC model

with beta priors. There is only one observation of flood extent, z, so we are unable

to validate calibrated predictions of an independent event. Instead we use the same

event for calibration and prediction, x′ = x and y′(m) = y(m) for m = 1, . . . ,M .

Consequently we are unable to test the stationarity of the calibration inputs, θ,

and likelihood parameters, φ = (α, β), between events of different magnitudes.

Figure 5.4 shows the observed data and three simulations from the Buscot

dataset. We chose the simulation with the least falses, m = 110, one with many

false-positives, m = 91, and one with many false-negatives, m = 349. In the exam-

ples which follow the results corresponding to these simulations will be labelled.

The cross-classification counts for these simulations are given in Table 5.2.

5.3.1 Example Using α, β ∼ U [0, 1]

Figure 5.5 shows the results of calibration and calibrated prediction using α, β ∼
beta(1, 1) ≡ U [0, 1]. The marginal posterior for the simulation index, p(m|z),

is nonnegligible for very few values of m, and of these values it is much larger

for the marginal posterior mode, say m⋆, than the others, p(m⋆|z) ≫ p(m|z) for

m 6= m⋆, see Figure 5.5(b). In other words, the marginal posterior discriminates

a lot between simulations because falses are heavily penalised. Consequently our

calibrated prediction is dominated by a single simulation, y′(m⋆).

For the simulation corresponding to the marginal posterior mode, y(m⋆), the

number of falses is small but is not the minimum, i.e. m⋆ 6= 110. Figure 5.5(d)

shows the marginal posterior expectations for α and β (grey cross) which give an
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(d) Simulation with many false-negatives
(m = 349).

Figure 5.4: Observed data and three simulations from the Buscot dataset. For
Figures 5.4(b) to 5.4(d) true-negatives are white, false-negatives are green, true-
positives are blue, and false-positives are red.

insight into why m⋆ 6= 110. From Figure 5.5(d) E (α|z) < E (β|z), taking these

values for α and β in the BC model we find true-negatives are rewarded more

than true-positives, but false-negatives are penalised more than false-positives (1−
E(β|z) < 1 − E (α|z)). The effect of α 6= β was investigated at the end of

Section 5.2. For our example α
.
= E (α|z) = 0.798 and β

.
= E (β|z) = 0.983, on

substitution into Equation (5.10) we find that the increase in false-positives from

y(1) to y(2) would need to be more than 2.432 times the increase in true-positives

to obtain p(y(2)|z) < p(y(1)|z).

The BC model parameters α and β encode the uncertainty around the flood

extent boundary and away from it, although in reality this uncertainty is very

different. The number of trues is much greater than the number of falses for all

simulations because falses typically only occur around the flood extent boundary.
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Figure 5.5: Results of calibration and calibrated prediction using the BC model
with priors α, β ∼ beta(1, 1) ≡ U [0, 1]. In Figure 5.5(c) the posterior for θ is
represented by circles centred at θ(m) with radius proportional to p(θ(m)|z). In
Figure 5.5(d) the black crosses are centred at (E (α|z, m) ,E (β|z, m)) with hori-
zontal and vertical bars of length 4Sd (α|z, m) and 4Sd (β|z, m). The grey cross is
centred at (E (α|z) ,E (β|z)) with horizontal and vertical bars of length 4Sd (α|z)
and 4Sd (β|z).
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Figure 5.6: Results of calibration and calibrated prediction using the BC model
with priors α, β ∼ beta(10000, 10000). In Figure 5.6(c) p(θ|z) is approximated
from p(θ(m)|z) for m = 1, . . . ,M using a thin-plate spline. In Figure 5.6(d)
the black crosses are centred at (E (α|z, m) ,E(β|z, m)) with horizontal and ver-
tical bars of length 4Sd (α|z, m) and 4Sd (β|z, m). The grey cross is centred
at (E (α|z) ,E (β|z)) with horizontal and vertical bars of length 4Sd (α|z) and
4Sd (β|z).
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For these reasons the marginal posterior for the BC model parameters, p(α, β|z),

is only nonnegligible for very large values of α and β. Consequently falses are very

heavily penalised. The reason E (β|z) > E (α|z) is that the ratio of true-negatives

to false-negatives is larger than the ratio of true-positives to false-positives.

Figure 5.5(e) shows E (y′|z) which is included for comparison to GLUE where it

is described as a map of flood probability (compare to Figure 4.1). The calibrated

prediction, p(z′i = 1|z) for i = 1, . . . , n, is shown in Figure 5.5(f). This is our

prediction of the probability of flooding in a future event having calibrated the

simulator and likelihood using an observation of flood extent. Because the BC

model is homogeneous and p(m⋆|z) ≫ p(m|z) for m 6= m⋆, the probability of

flooding seemingly only takes two values, in particular the uncertainty is no larger

near the boundary.

For a general prior p(α, β) the posterior p(m,α, β|z) will not be available analyt-

ically, but we may be able to generate a sample from the posterior using MCMC.

Figure 5.5(d) gives an insight into the potential of MCMC for generating a sample

from the posterior. Consider the following Metropolis-Hastings update for m hold-

ing α and β fixed: propose m′ from a discrete uniform on 1, . . . , m−1, m+1, . . . ,M

and accept this proposal with probability

min

(
1,
p(α, β|z, m′)p(m′|z)

p(α, β|z, m)p(m|z)

)
.

Suppose p(α, β|z, m) is large then from Figure 5.5(d) p(α, β|z, m′)/p(α, β|z, m)

will probably be very small. Also Figure 5.5(d) suggests that a more intelligent

proposal, q(m′|m), would increase the probability of acceptance. For the BC model

with beta priors this issue does not arise, but it motivates some of the problems

we will encounter when we come to consider more complicated likelihoods.

For calibration we expect many simulation indexes to have nonnegligible mar-

ginal posteriors because the simulations are very similar. For calibrated prediction

we expect more than one simulation to be important because in different parts

of the array different simulations may be closer to the observed data. We have

assumed stationarity of the calibration inputs, θ, and the likelihood parameters,
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φ = (α, β), between the events of interest to make calibration and calibrated pre-

diction feasible, but in practice they will not be stationary so there is a danger of

over-fitting the model to the calibration event.

5.3.2 Example Using α, β ∼ beta(10000, 10000)

Figure 5.6 shows the results of calibration and calibrated prediction using α, β ∼
beta(10000, 10000). This choice of prior ensures that α and β are close to 0.5 (see

Figure 5.6(a)), and therefore falses cannot be so heavily penalised. For example,

suppose y(2) can be obtained from y(1) by changing one true-positive to a false-

negative, then taking α = β = 0.6 we find p(y(2)|z)/p(y(1)|z) = (1 − β)/α =

0.667. In Figure 5.6(b) we see that the marginal posterior, p(m|z), is nonnegligible

for many simulation indexes, and this transforms into a flatter posterior for the

calibration inputs, p(θ|z) (see Figure 5.6(c)). The marginal posterior expectations

for the BC model parameters are closer than in the first example, now E (α|z) =

0.509 and E (β|z) = 0.563. Substituting α = E (α|z) = 0.509 and β = E(β|z) =

0.563 into Equation 5.10 we find s⋆ = 1.114, so false-negatives are penalised only a

little more than false-positives. Accordingly the posterior mode for the simulation

index corresponds to the simulation with the least falses, m⋆ = 110. The calibrated

prediction is very uncertain over the whole array because α and β are constrained

to be close to 0.5 (see Figure 5.6(f)). This is undesirable because we are very

certain about the prediction within the channel and on the floodplain away from

the flood boundary.

In conclusion, the BC model is useful for illustrating our Bayesian framework

for calibration and calibrated prediction because it is so simple, but we are unable

to obtain the desired calibration and calibrated prediction results simultaneously

using this simple model. In Chapters 6, 7 and 8 we consider various extensions of

the BC model which represent spatial dependence, heterogeneity and blur.

In this chapter we have described a Bayesian framework for the calibration of

flood inundation simulators. To illustrate the framework we used the BC model

for the likelihood, which lead to analytical results for calibration and calibrated
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prediction. However, the BC model does not represent the data accurately because

it does not account for blur, spatial dependence or heterogeneity. In the next

chapter we consider the Ising model for the likelihood, which accounts for blur

and spatial dependence.
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Chapter 6

The Ising Model

We begin by introducing the Ising model for spatially distributed binary valued

variables. Then we extend this model to regression on a binary image (the simu-

lator output), which improves on the binary channel model by representing blur

and spatial dependence. We describe how calibration and calibrated prediction

is performed using the Ising model and in doing so identify that an intractable

normalising constant must be estimated. We review importance, bridge and path

sampling methods for the estimation of normalising constants. Then we thoroughly

investigate the potential for path sampling in our application: testing the accuracy

against exact computations; extending the methodology to paths between images

and model parameterisations; and introducing a method for sampling over areas.

When none of these strategies prove to be computationally efficient enough we

discuss numerous approximations to the path sampling identity, including Tukey’s

transformation for additivity.

6.1 The Ising Model

The Ising model was devised in 1924 by Ernst Ising as a model for ferromagnetism

(Ising, 1925). The classical construction is in terms of joint probabilities but here

we present a conditional probability approach which Besag (1974) argues is a more

natural way to define the Ising model. In conditional probability approaches to

spatial processes, there are strong constraints on the structure of the conditional

probabilities to guarantee that a joint probability exists. Fortuitously it is these
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very constraints that mean the Ising model is necessarily generated when the

variables are binary valued, the set of sites is a regular lattice, the only interactions

are between nearest neighbour pairs, and the parameters are homogeneous.

We start with the class of pixel-based models, in which the set of pixel sites, Λ,

and the set of values that a pixel can take, χ, are quite general. The sites, although

quite general, are fixed and it is only the value of the pixels we are interested in

modelling. For convenience, the “distribution of a pixel” will be taken to mean

the distribution of the value of that pixel.

It is easier to consider the distribution of a pixel given all other pixels than the

joint distribution of all the pixels; this is what makes the conditional probability

approach so appealing (Hurn et al., 2003).

A random field is a collection of random variables z = {zi ∈ χ : i ∈ Λ}. We

define a binary relation on Λ, denoted by ∼. It is required to be symmetric, and if

i ∼ j we say i and j are neighbours. The random field z is a Markov random field

if the distribution of one pixel given all others depends only on its neighbours

p (zi|z−i) = p (zi|z∂i) ,

where ∂i denotes the neighbours of i and because the neighbourhood relation is

symmetric j ∈ ∂i⇔ i ∈ ∂j.

The specification of a neighbourhood for each site i ∈ Λ defines a class of valid

stochastic schemes (Besag, 1974). We must identify this class to ensure that the

full conditionals we define will give rise to a legitimate joint density. Given the

full conditionals for each pixel, we need only consider the density relative to some

reference configuration z⋆ because the joint density must sum to 1. Assuming that

p (z) > 0.0 for all realisations z, this ratio can be written

p (z)

p (z⋆)
=

n∏

i=1

p
(
zi|z1, . . . , zi−1, z

⋆
i+1, . . . , z

⋆
n

)

p
(
z⋆

i |z1, . . . , zi−1, z⋆
i+1, . . . , z

⋆
n

) ,

(see Section 8.2.1 for a proof). The labelling of the sites is arbitrary so there

are many alternative such factorisations of p (z) /p (z⋆). Clearly the value of

p (z) /p (z⋆) should be invariant to which factorisation is used, which puts severe re-

strictions on the functional form of the full conditionals. Also the joint density p(z)
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should be invariant to the reference configuration, z⋆. The Hammersley-Clifford

theorem determines the form that the full conditionals must take to respect these

consistency conditions (Besag, 1974).

Theorem (Hammersley-Clifford). Let p (·) be a distribution with p (z) > 0,
∀z ∈ χ|Λ|. Define a clique to be a subset of sites in which all members are neigh-
bours of all others. Then z is a Markov random field if, and only if, the joint
density takes the form

p (z) =
1

Z
exp

(
∑

C∈C

ΦC (zC)

)
(6.1)

where C is the set of all cliques, the potential functions, {ΦC}, may be chosen
arbitrarily, and

Z =
∑

z

exp

(
∑

C∈C

ΦC (zC)

)
(6.2)

is the normalising constant.

A simple proof of this theorem can be found in Besag (1974). Z is also known

as the partition function. This theorem, in addition to giving the most general

form for the full conditionals, suggests a way of defining them implicitly through

the potential functions.

If a clique contains a large number of sites it may be hard to define the potential

function. Besag (1972) treats a subclass of problems, called auto-models, in which

the cliques may contain at most two sites and the conditional probability associated

with each site comes from the exponential family. When the pixels are binary

valued, z ∈ {−1, 1}|Λ|, the model is called the auto-logistic model.

Assuming pairwise only interactions, the potential for higher order cliques is

0 and the cliques of interest are individual sites and neighbour pairs. Let µ =
(
µ1, . . . , µ|Λ|

)
and ∆ = (δij) be a vector and a matrix of real parameters, then

define

Φi (zi |µ) = µizi, (6.3)

to be the potential function for individual sites, i, and

Φi∼j ({zi, zj} |∆) = δij1 [zi = zj ] (6.4)
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to be the potential function for neighbour pairs, i ∼ j. Increasing µi increases the

probability that zi = 1, and increasing δij increases the probability that zi = zj. On

substituting these potential functions into Equation (6.1) we find the unnormalised

density for the auto-logistic model is

q (z |µ,∆) = exp

(
∑

i∈Λ

µizi +
∑

i∼j

δij1 [zi = zj]

)
, (6.5)

where
∑

i∼j is the sum over all neighbour pairs. However, there are many different

but equivalent parameterisations of the auto-logistic model.

Auto-models are particularly appropriate for nearest-neighbour lattice based

processes, such as we have here, where it is natural to consider the cliques to be

either individual sites, or pairs of North–South or East–West nearest-neighbours.

Now i ∼ j says i and j are North–South or East–West nearest-neighbours. The

Ising model is the simplest form of the auto-logistic model in which the set of

sites, Λ, is a r × c regular lattice, µi = µ for all sites i, and δij = δ for all pairs of

North–South or East–West nearest-neighbours i ∼ j. Denote the number of sites

(r × c) by n, then the unnormalised density for the Ising model is

q (z|µ, δ) = exp

(
µ

n∑

i=1

zi + δ
∑

i∼j

1 [zi = zj ]

)
, (6.6)

where the trend parameter µ controls the overall level of the image, and the cluster-

ing parameter δ controls the clustering of like-coloured sites. Conveniently, µ = 0

corresponds to no bias for one pixel value over another, and δ = 0 to independence

of pixels.

An important feature of the conditional probability approach to spatial processes

is that the full conditionals are simple to obtain for Gibbs sampling Markov chain

Monte Carlo. For the Ising model the full conditional for zi is

p (zi = 1|z−i, µ, δ) =

(
1 + exp

(
−2µ− δ

∑

j∈∂i

zj

))−1

(6.7)

where ∂i is the set of four nearest neighbours of the site i.

Figure 6.1 shows a selection of realisations from the Ising model on a 30 × 30

lattice for different values of the trend and clustering parameters. The realisations
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5 10 15 20 25 30

5
10

15
20

25
30

(b) µ = 0.5, δ = 0.0.
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(d) µ = 0.0, δ = 0.5.
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(f) µ = 0.5, δ = −0.5.

Figure 6.1: Realisations from the Ising model on a 30 × 30 lattice, using various
values of the trend and clustering parameters. Black and white correspond to pixel
values of 1 and −1 respectively.

were obtained using Gibbs sampling MCMC with the full conditionals from Equa-

tion (6.7). The whole image was updated by sequentially updating each pixel, this

was repeated 100000 times to remove the effect of the initial conditions.

We have purposely focused on the Ising model because of its simple interpreta-

tion and mathematics. For the flood inundation problem we expect heterogeneity

to be a necessary feature of the likelihood (see Section 5.3), but this would dramat-

ically increase the computational expense of posterior inference, and as we shall

see the simple Ising model is already too computationally demanding.

6.2 The Ising Model with Regression on a Bi-

nary Image

For the Bayesian framework described in Chapter 5 we need a model for p (z|y,φ),

where the observed data, z, and the simulator output, y, are binary images. In
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(a) The covariate image y.
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(b) µ = 0.0, δ = 0.0, γ =
0.5.
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(c) µ = 0.0, δ = 0.0, γ =
1.0.

Figure 6.2: Data simulated from the Ising model with regression on the 30 × 30
binary image y shown in Figure 6.2(a). Black and white correspond to pixel values
of 1 and −1 respectively.

order to be used in this context the Ising model needs to be extended to represent

regression on a binary image. This can be done by augmenting the single site

potential function in Equation (6.3) with a term expressing the dependence of z

on y,

Φi (zi |y, µ, γ ) = µzi + γ
∑

k∈νi

1 [zi = yk]

where νi is the set of sites of covariates of zi in y and γ is the regression parameter.

We take νi to be the site i and its four nearest neighbours. Using this together

with Equations (6.4) and (6.1), we find the unnormalised density for the Ising

model with regression on a binary image is

q (z |y,φ) = exp

(
µ

n∑

i=1

zi + δ
∑

i∼j

1 [zi = zj ] + γ
n∑

i=1

∑

k∈νi

1 [zi = yk]

)
, (6.8)

where φ = (µ, δ, γ).

This is not the most general formulation of the Ising model for binary z given

binary y, because the term expressing dependence of z on y need not be con-

strained to take this form. If we consider the wider class of auto-logistic models

the potential functions may be different for each clique, and if we consider the

even wider class of Markov random fields we may define more cliques.

Our model (see Equation 6.8) is related to a joint Ising model for y and z, for

which we would have to define potential functions for the single sites and neighbour

pairs in y and z, and for the cliques between sites in y and sites in z. In an Ising
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6.2. The Ising Model with Regression on a Binary Image

model for the distribution of z given y, the potential functions for single sites and

neighbour pairs in y are not required, and the potential function for the cliques

between sites in y and sites in z becomes part of the potential functions for cliques

in z.

In Figure 6.2 an example y is given together with realisations of the model when

γ = 0.5 and 1.0. The regression parameter γ determines the dependence of the

observed data z on the simulator output y and γ = 0 means z is independent of

y.

To find the normalised density p(z|y,φ) from Equation (6.8) we must calculate

the normalising constant, Z(y,φ), which is the sum over 2n terms (being the

number of possible configurations of a binary image of size n),

∑

z∈{−1,1}n

exp

(
µ

n∑

i=1

zi + δ
∑

i∼j

1 [zi = zj ] + γ
n∑

i=1

∑

k∈νi

1 [zi = yk]

)
.

For the Buscot dataset n = 48 × 76 = 3648 and there is no way this summation

can be computed directly when δ 6= 0 (see Section 6.4.1). The calculation of

the normalising constant of the Ising model is a well known problem and much

research has gone into either avoiding the need for or approximating this quantity.

In the next section we discuss the implications of this problem for calibration and

calibrated prediction.

6.2.1 Posterior, Calibration and Calibrated Prediction

The posterior distribution for the simulation index parameter m and the Ising

model parameters φ is

p(m,φ|z) ∝
∑

y

p(z|y,φ)p(y|m)p(φ)p(m)

∝ q(z|y(m),φ)

Z(y(m),φ)
p(φ), (6.9)

where p(m) = 1/M , p(y|m) = 1[y = y(m)] and p(y′|m) = 1[y′ = y′(m)] as in

Section 5.1. Note the presence of the (likelihood) normalising constant which does

not cancel in the ratio

p(m′,φ′|z)

p(m,φ|z)
=
q(z|y(m′),φ′)

q(z|y(m),φ)

Z(y(m),φ)

Z(y(m′),φ′)

p(φ′)

p(φ)
, (6.10)
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so we cannot calculate the posterior for m and φ exactly. We will see when we

come to Section 6.3 that the ratio of normalising constants can be estimated more

directly than the normalising constant itself.

The marginal posterior for m is obtained by integrating over φ,

p(m|z) ∝
∫
q(z|y(m),φ)

Z(y(m),φ)
p(φ) dφ, (6.11)

in this case the normalising constant is again present but taking the ratio does not

lead to a ratio of normalising constants. This means we will have to estimate the

normalising constant and not just the ratio.

The calibrated predictions are

p(z′i = 1|z) =
M∑

m=1

∫
p(z′i = 1|y′(m),φ)p(m,φ|z) dφ

∝
M∑

m=1

∫ ∑
z′

−i
q(z′i = 1, z′

−i|y′(m),φ)

Z(y′(m),φ)

q(z|y(m),φ)

Z(y(m),φ)
p(φ) dφ. (6.12)

Whilst some simplification is possible by noting that Z(y′(m),φ) =
∑

z′

−i
q(z′i =

1, z′
−i|y′(m),φ) +

∑
z′

−i
q(z′i = −1, z′

−i|y′(m),φ), we still need to evaluate the nor-

malising constant and a sum over 2n−1 terms.

Møller et al. (2004) present a method for avoiding the calculation of the normal-

ising constant using an auxiliary variable method in MCMC. An auxiliary variable

is introduced on the same state space as the image z with a certain conditional

density. The task is then to find the posterior distribution of the parameters and

the auxiliary variable by Metropolis-Hastings MCMC, where the Hastings ratio

contains the ratio of two (different) normalising constants. The trick of this ap-

proach is to choose the proposal distribution to be equal to the likelihood. This

introduces two more normalising constants into the Hastings ratio, which cancel

with the previous two. This simpler Hastings ratio makes the Metropolis-Hastings

MCMC algorithm possible.

Aside from the mixing of the algorithm being strongly dependent on the density

used for the auxiliary variable, the efficiency of this method unfortunately relies

heavily on the ability to perform perfect sampling from the proposal distribution.

Coupling from the past algorithms exist for the auto-logistic model (see Propp
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and Wilson, 1996), but we were not able to sample efficiently from the Ising model

with regression on an external field because of heterogeneity.

None of the methods presented here offer an efficient way of avoiding the calcu-

lation of the normalising constant for the flood inundation problem.

6.3 Approximating the Normalising Constant

Having failed to identify a way in which to avoid the calculation of the normalising

constant, we will now describe ways in which it can be approximated. Although

methods based on analytic approximation and numerical integration are possible

the most widely used method in statistics, because of its general applicability, is

Monte Carlo simulation. Gelman and Meng (1998) give a thorough exposition of

this subject, illustrating the relationships between the various methods. We shall

only give a brief review here.

When the normalising constant is not tractable it may still be possible to sim-

ulate from the model (as is the case for the Ising model). Expectations can be

approximated using these model simulations and this is exploited in the Monte

Carlo methods we now present.

6.3.1 Importance Sampling

Consider a density p (z|ω) indexed by a scalar parameter ω, where the term “den-

sity” is used for both continuous and discrete distributions. We are concerned with

situations where the density is not known exactly but can be expressed in terms

of an easily-computed unnormalised density, q (z|ω), and an unknown normalising

constant Z (ω),

p (z|ω) =
q (z|ω)

Z (ω)
.

If an approximate density p̃ (·|ω) can be found for p (·|ω), then using the identity

Z(ω) = Ep̃

(
q (z|ω)

p̃ (z|ω)

)
,

where Ep̃ (g (z)) =
∑

z g (z) p̃ (z|ω), the Importance Sampling estimator of Z(ω) is

1

n

n∑

i=1

q (zi|ω)

p̃ (zi|ω)
,
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where z1, . . . , zn is a sample from p̃ (·). This simple method is only efficient when

p̃ (·) is a good approximation to p (·).
When comparing parameters ω0 and ω1, it is sufficient to calculate the likelihood

ratio
p (z|ω1)

p (z|ω0)
=
q (z|ω1)

q (z|ω0)

Z (ω0)

Z (ω1)
,

so it is sufficient to calculate the ratio of normalising constants (or equivalently

the difference of the logarithms). The importance sampling estimate of this ratio

is based on the identity
Z (ω1)

Z (ω0)
= Eω0

(
q (z|ω1)

q (z|ω0)

)
(6.13)

where the expectation Eω0 (·) is with respect to p (z|ω0). Suppose the components

of z are discrete then

Eω0

(
q (z|ω1)

q (z|ω0)

)
=
∑

z

q (z|ω1)

q (z|ω0)
p (z|ω0) =

∑

z

q (z|ω1)

Z (ω0)
=
Z (ω1)

Z (ω0)
.

The samples are only taken from one of the unnormalised densities so the effi-

ciency of this estimator depends on the amount of overlap between the two. If the

densities are not heavily overlapping the values of z obtained will not represent a

good sample from q (z|ω1) in which case the approximation will be poor.

6.3.2 Bridge Sampling

Bridge Sampling was introduced by Meng and Wong (1996) to allow draws to be

taken from both unnormalised densities, whilst another density serves as a bridge

to connect the two samples. The fundamental identity for Bridge Sampling is

Z (ω1)

Z (ω0)
=

Eω0 (q (z|ω1)α (z))

Eω1 (q (z|ω0)α (z))
, (6.14)

where α (·) is a function satisfying

0 <

∣∣∣∣∣
∑

z∈Ω0∩Ω1

α (z) p (z|ω0) p (z|ω1)

∣∣∣∣∣ <∞,

and Ωt is the support for p (z|ωt), for t = 0, 1. Let z0,1, . . . , z0,n0 and z1,1, . . . , z1,n1

be random samples from p (z|ω0) and p (z|ω1) respectively. Then the Bridge Sam-

pling estimate of Z (ω1) /Z (ω0) is

Z (ω1)

Z (ω0)
≈

1
n0

∑n0

i=1 q (z0,i |ω1 )α (z0,i)
1
n1

∑n1

i=1 q (z1,i |ω0 )α (z1,i)
.
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The effect of the bridge is to reduce the amount of overlap needed between the

two unnormalised densities. To see the “bridging” element of this method more

clearly, assume qb (z) is a (bridge) density that lies between q(z|ω0) and q(z|ω1),

i.e. has support Ωω0 ∩ Ωω1 , and let

α (z) =
qb (z)

q (z|ω0) q (z|ω1)
.

Substituting this into Equation (6.14) and then using the importance sampling

identity (6.13) we find

Eω0 (qb (z) /q (z|ω0))

Eω1 (qb (z) /q (z|ω1))
=
Zb/Z (ω0)

Zb/Z (ω1)
=
Z (ω1)

Z (ω0)

where Zb is the normalising constant corresponding to the unnormalised density

qb (z). The above equation shows how bridge sampling can be seen as a way of

carrying out importance sampling with respect to some arbitrary density and then

combining the results.

6.3.3 Path Sampling

A natural extension to Bridge sampling is to use multiple bridges, and taking

this to the limit we may consider infinitely many continuously connected bridges

linking the two densities. In doing so we arrive at the fundamental identity for path

sampling, (see Gelman and Meng, 1998, for a proof). We shall present a derivation

of the path sampling identity from first principles, because it is informative to

see how the algorithm is constructed. This derivation follows Gelman and Meng

(1998).

Let Z (ω) =
∑

z q (z|ω) where ω is a continuous d-dimensional vector parame-

ter. Suppose we are interested in the ratio Z (ω1) /Z (ω0) for given vectors ω0

and ω1. The first step requires the construction of a path between ω0 and ω1.

Define a vector function ω (t) = {ω1 (t) , . . . , ωd (t)} with t ∈ [0, 1] and endpoints

ω (0) = ω0 and ω (1) = ω1. Take the logarithm of the normalising constant and
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then differentiate with respect to t,

d

dt
logZ (ω (t)) =

1

Z (ω (t))

∑

z

d

dt
q (z|ω (t))

=
1

Z (ω (t))

∑

z

d∑

k=1

ω′
k (t)

∂

∂ωk
q (z|ω (t))

=
∑

z

d∑

k=1

ω′
k (t)

∂

∂ωk
(log q (z|ω (t))) p (z|ω (t))

= Eω(t)

(
d∑

k=1

ω′
k (t)

∂

∂ωk

log q (z|ω (t))

)
(6.15)

where Eω(t) (·) is the expectation with respect to the density p (z|ω (t)). Let

Θ(ω) = logZ(ω), then integrating from 0 to 1 yields

Θ(ω1) − Θ(ω0) =

∫ 1

0

Eω(t)

(
d∑

k=1

ω′
k (t)

∂

∂ωk

log q (z|ω (t))

)
dt. (6.16)

This is the most general representation of the path sampling algorithm, it includes

thermodynamic integration (see for example Frenjel, 1986) as a special case. A

simple unbiased estimator is

1

n

n∑

i=1

d∑

k=1

ω′
k (ti)

∂

∂ωk
log q (zi|ω (ti))

where ti ∼ U [0, 1] and zi ∼ p(z|θ(ti)), so (zi, ti) is a sample from the joint dis-

tribution p(z, t) = p(z|θ(t))p(t) where p(t) is uniform on [0, 1]. Alternatively,

the integral in Equation (6.16) can be evaluated numerically, for example using

Simpson’s rule, where the expectation is approximated by the sample mean.

Path sampling is limited to calculating the ratio of normalising constants. When

the absolute value is required, the normalising constant will have to be known for

some reference parameter ω⋆. Then taking ω0 = ω⋆ in Equation (6.16), the

absolute value can be found for all other parameters ω1. The question is “for what

parameters is the normalising constant known exactly?”.

One method, appropriate for the auto-logistic model, is presented in Pettitt et al.

(2003). They begin by showing how the normalising constant can be calculated

exactly if cylindrical boundary conditions are assumed, so pixels in the last column
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are neighbours with pixels in the first column. To approximate the normalising

constant on a lattice they introduce an auxiliary variable ωc with the property that

the boundary conditions are cylindrical when ωc = 0.0 and lattice when ωc = 1.0.

Path sampling over this auxiliary variable from 0.0 to 1.0 and observing that the

normalising constant is known exactly when ωc = 0.0, the absolute normalising

constant can be predicted for lattice boundary conditions. Computational restric-

tions mean that the cylinder normalising constant can only be calculated when

either the number of rows or columns is less than about 10.

Friel and Pettitt (2004) extend this model to larger lattices following a similar

auxiliary variable method to that above. The large lattice is split up into a number

of more manageable sub-lattices, for which the cylinder normalising constant can

be calculated. An auxiliary variable represents the connection between the sub-

lattices, and by path sampling along this parameter as before we can obtain a

prediction of the absolute normalising constant for the large lattice. We present

our own auxiliary variable methods in Sections 6.4.4 and 6.4.6 for paths between

parameterisations and paths between binary images.

6.4 Path Sampling for the Ising Model with Re-

gression on a Binary Image

In this section we consider how path sampling can be utilised for the Ising model

with regression on a binary image.

6.4.1 Exact Computation of the Normalising Constant

In Sections 6.1 and 6.2 we presented symmetric parameterisations of the Ising

model and the Ising model with regression on an image. The argument for adopt-

ing these parameterisations is that the log normalising constant is symmetric about

µ = 0, Θ (−µ, δ, γ,y) = Θ (µ, δ, γ,y), so we only need to calculate it for µ > 0. Fur-

thermore, the interpretation of the parameters is transparent: µ = 0 corresponds

to no bias towards positives or negatives; δ = 0 corresponds to independence of

pixels; and γ = 0 means z is independent of y. However, we decided to test the
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functionality of a different parameterisation that avoids the use of indicator func-

tions, and it was within the framework of this alternative model that we tested

the accuracy of path sampling (see Section 6.4.2). Note that it is also possible

to calculate the normalising constant exactly for the symmetric model when the

clustering parameter is zero, δ = 0, and therefore this is not an advantage of the

non-symmetric specification.

Suppose the simulator output is s ∈ {0, 1}n and the observed data is r ∈
{0, 1}n and let α, β, ψ denote the trend, clustering and regression parameters.

Then the unnormalised density for the non-symmetric Ising model with regression

on a binary image is

q (r|s, α, β, ψ) = exp

(
α

n∑

i=1

ri + β
∑

i∼j

rirj + ψ

n∑

i=1

∑

k∈νi

risk

)
.

When β = 0.0 the pixels are independent, and the normalising constant Z(s, α, β =

0, ψ) is
∑

r∈{0,1}n

n∏

i=1

exp

(
ri

(
α + ψ

∑

k∈νi

sk

))

and from
∑

r

∏
i a

ri
i =

∏
i

∑
ri
ari

i we find

Z (s, α, β = 0, ψ) =

n∏

i=1

∑

ri∈{0,1}

exp

(
ri

(
α+ ψ

∑

k∈νi

sk

))

=
n∏

i=1

(
exp

(
α + ψ

∑

k∈νi

sk

)
+ 1

)
. (6.17)

Suppose we want to compute the log normalising constant Θ (s, α, β⋆, ψ) where

β⋆ 6= 0.0. Path sampling from β = 0.0 to β = β⋆, keeping the other parameters

fixed provides the difference in log normalising constants. Then, using Equa-

tion (6.17) to calculate the normalising constant when β = 0.0, we can calculate

Θ (α, β⋆, ψ, s).

We have now presented a way of predicting the absolute value of the normalis-

ing constant. The remaining part of the chapter is only concerned with the ap-

proximation of normalising constant ratios or equivalently the difference of their

logarithms.
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Figure 6.3: Results of path sampling along the α coordinate, together with the
error in the approximation. Figure 6.3(a) shows the binary image s, where black
and white correspond to 1 and 0 respectively. In Figure 6.3(b) the path sampling
estimates are shown as circles and the exact values as lines.

6.4.2 A Test of Path Sampling Estimate Accuracy

Equation (6.17) provides a means of evaluating the performance of the path sam-

pling estimate (PSE), which will be important when the Ising model is used within

our calibration framework.

With β = 0.0, we can path sample along α or ψ or, indeed, any path in the α−ψ
plane, and compare the outcomes to the exact analytical result of Equation (6.17).

This exercise will not tell us anything about the performance of the PSE when

β 6= 0.0.

We test the PSE along the α coordinate between α0 = 0.0 and α1 = −8.0 with

β = 0.0 and ψ = 0.0, 0.5, 1.0. For the binary image s we use a 10×10 subregion of a

LISFLOOD-FP output for the Buscot dataset (see Section 2.4 and Figure 6.3(a)).

To find the absolute log normalising constant rather than the ratio, the value at

the lower limit of the integration must be known, we calculated the value exactly at

α0 = 0.0 using Equation (6.17). Figure 6.3 summarises the results of the analysis.

An error in the prediction of the log normalising constant, ξ = Θ̃ − Θ, leads to

a multiplicative factor of exp(−ξ) in the corresponding likelihood prediction. If

|ξ| ≪ 1.0 then exp(−ξ) ≈ 1− ξ and the error in the likelihood prediction is about

100|ξ|%. From Figure 6.3(c) ξ < 0.02 so the error in the likelihood prediction will

be less than 2%. Note that the error does not increase as the regression, ψ, on s
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increases.

6.4.3 Paths Between Parameterisations

Motivated by the auxiliary variable method of Friel and Pettitt (2004) we have

developed a method for path sampling between parameterisations. Define an ad-

ditional parameter ε with the property that the parameterisation is asymmetric

when ε = 0.0 and symmetric when ε = 1.0. To respect the different binary repre-

sentation between the two parameterisations, we have zi = 2ri−1 and yi = 2si−1.

The unnormalised density of this hybrid Ising model is

q (z|y, α, β, ψ, µ, δ, γ, ε)

= exp

(
(1 − ε)

(
µ

n∑

i=1

zi + δ
∑

i∼j

1 [zi = zj ] + γ
n∑

i=1

∑

k∈νi

1 [zi = yk]

)

+ε

(
α

n∑

i=1

zi + 1

2
+ β

∑

i∼j

(
zi + 1

2

)(
zj + 1

2

)
+ ψ

n∑

i=1

∑

k∈νi

(
zi + 1

2

)(
yk + 1

2

)))
.

Let the path be ωε (t) = (α, β, ψ, µ, δ, γ,y, ε = t), then using the path sampling

identity from Equation (6.16) we find

log

[
Z (ε = 1)

Z (ε = 0)

]
=

∫ 1

0

Eωε(t)

(
n∑

i=1

(
α

(
zi + 1

2

)
− µzi

)

+
∑

i∼j

(
β

(
zi + 1

2

)(
zj + 1

2

)
− δ1 [zi = zj ]

)

+
n∑

i=1

∑

k∈νi

(
ψ

(
zi + 1

2

)(
yk + 1

2

)
− γ1 [zi = yk]

))
dt.

Although this operation is not trivial and may prove computer intensive, it only

needs to be done once. When we have a prediction for the log normalising constant

in the desired parameterisation, this can be used as the start point for subsequent

path sampling.

6.4.4 Paths Over the Continuous Parameters µ, δ and γ

In this section we describe path sampling over the continuous parameters µ, δ and

γ, the discussion of path sampling between simulator outputs will be taken up in

Section 6.4.6.
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The normalising constant is only known exactly when δ = 0, in which case

Z(y, µ, δ = 0, γ) =

n∏

i=1

(
exp

(
−µ+ γ

∑

i∈νi

1[yk = −1]

)
+ exp

(
µ+ γ

∑

i∈νi

1[yk = 1]

))
,

following a similar argument to that in Section 6.4.1.

For the Ising model with regression on a binary image the most general path

over the continuous parameters can be written ω (t) = (µ (t) , δ (t) , γ (t) ,y), where

y is included so ω(t) fully parameterises the model.

Suppose we wish to integrate between δ0 and δ1 whilst keeping the other para-

meters fixed, then the path would be ωδ (t) = (µ, (δ1 − δ0) t+ δ0, γ,y). In the sum

over parameters in Equation (6.16), the only nonzero term will be that containing

the derivative with respect to δ,

∂

∂δ
log
(
q
(
z|ωδ (t)

))
=
∑

i∼j

1 [zi = zj ] ,

and the path sampling identity becomes

log

[
Z
(
ωδ

1

)

Z
(
ωδ

0

)
]

= (δ1 − δ0)

∫ 1

0

Eωδ(t)

(
∑

i∼j

1 [zi = zj ]

)
dt (6.18)

where ωδ
t = (µ, δt, γ,y) for t = 0, 1.

The results for µ and γ are derived in the same way. Let ωµ(t) = ((µ1 − µ0)t+

µ0, δ, γ,y) and ωγ (t) = (µ, δ, (γ1 − γ0) t+ γ0,y) be the paths, and let ω
µ
t and ω

γ
t ,

for t = 0, 1, be the end points of the integration then the path sampling identities

are

log

[
Z (ωµ

1 )

Z (ωµ
0 )

]
= (µ1 − µ0)

∫ 1

0

Eωµ(t)

(
n∑

i=1

zi

)
dt (6.19)

and

log

[
Z (ωγ

1 )

Z (ωγ
0 )

]
= (γ1 − γ0)

∫ 1

0

Eωγ(t)

(
n∑

i=1

∑

k∈νi

1 [zi = yk]

)
dt. (6.20)

6.4.5 Robustness of Path Sampling Estimates Along µ, δ
and γ

When the clustering parameter, δ, is not zero there is no simple analytical result

available with which to test the accuracy of path sampling estimates (PSEs), but
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we can test the robustness of PSEs, i.e. the variability of the results.

In this section we test the robustness of the PSEs along the µ, δ and γ parameter

coordinates. We restrict the analysis to the set of parameters that produces output

that we consider to be appropriate for the flood inundation problem. By examining

the realisations from the Ising model for various values of the parameters, we choose

to focus on {(µ, δ, γ) |µ ∈ [−1, 1] , δ ∈ [0, 1] , γ ∈ [0, 1]}.
When a parameter is not being sampled its value will be set according to µ =

−0.5, δ = 0.25 or γ = 0.5. To test the effect of the image y on the robustness

we identified a 10× 10 subregion of the Buscot floodplain for which the simulator

outputs are very variable, and we selected five simulations which characterise this

variability.

The calculation of the PSE is done in two steps, we describe the method for µ

but it is the same for δ and γ. The range of integration, which for µ is [−1, 1],

is split into intervals of width 0.1. The first step is to estimate the expectation

for µ ∈ {−1.0,−0.9, . . . , 0.9, 1.0} using Gibbs sampling MCMC; we use 50000

iterations for each calculation. The second step is to estimate the integral. The

approximate expectations are smoothed using a spline smoothing routine and then

the area under the graph is calculated using Simpson’s rule. The iterative nature

of this scheme means that the PSE is obtained at each step along the path.

The results of the analyses are shown in Figures 6.4 and 6.5. The runs are so

close it is impossible to distinguish between them so we have plotted the difference

separately. The greatest magnitude difference is less than 0.04 and the magnitude

does not appear to be related to the binary image y. Finally, it is interesting to

note that Θ̃(δ) and Θ̃(γ) are quite linear in their arguments, whereas Θ̃(µ) is not.

This analysis highlighted a major problem with the PSE, that of computation

time. For example, the path sampling estimate along µ required 21 expectations

to be approximated, each of which took 52 seconds on a Pentium 4 2GHz processor

with 512MB of RAM.

For calibration and calibrated prediction we need to be able to generate a sam-

ple from p(m,φ|z), see Equation (6.9). If the unnormalised density, q(m,φ|z), is
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known then a sample can be generated using MCMC, but the (likelihood) normal-

ising constant Z(y(m),φ) is present in this unnormalised density. Therefore to use

MCMC we must evaluate the ratio of normalising constants (see Equation (6.10)),

every time µ, δ, γ or m changes. For the continuous parameters we can use the

path sampling methods described in Section 6.4.4 to approximate this ratio, and

in Section 6.4.6 we develop a method for approximating this ratio when the sim-

ulation index m changes. As a conservative estimate of the computation time,

suppose 50000 iterations are required, each of the four parameters are updated on

50% of the iterations, and the path sampling estimate takes one minute to com-

pute, then the sample would take almost ten weeks to generate. For the Buscot

dataset the image is 48 × 76 = 3648 pixels so will take considerably longer.

An alternative is to estimate the normalising constant offline for each m and for

µ, δ and γ on a grid which encompasses the values of interest. Suppose the grid

is defined by the range of parameters given previously with spacing of 0.1, this

gives 500× 21× 11× 11 ≈ 1 million parameter sets. For a particular image, y, an

efficient path sampling algorithm is to start with

{(µ = −1.0, δ = 0.0, γ,y)|γ ∈ {0.0, 0.1, . . . , 0.9, 1.0}}

and integrate along µ between −1.0 and 1.0; then start at

{(µ, δ = 0.0, γ,y)|µ ∈ {−1.0,−0.9, . . . , 0.9, 1.0}, γ ∈ {0.0, 0.1, . . . , 0.9, 1.0}}

integrate along δ from 0.0 to 1.0. This would require 11 path samples along µ

and 21 × 11 along δ, where the latter are shorter, taking only 28 seconds on the

machine described above. The total time to estimate the normalising constant

on the grid for every image will be over 40 days. Again this is for the 10 × 10

binary image. During the MCMC run either the continuous parameters must be

discretized according to the grid or the values of the normalising constant can be

interpolated from our grid of estimates. We have had to perform a number of one

dimensional integrals to obtain the grid of estimates, in Section 6.4.7 we develop

an extension to path sampling over areas.
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(e) y(5).

Figure 6.4: Simulations used in the test of robustness. Grey and white correspond
to pixel values of 1 and −1 respectively. The observed flood boundary is shown in
black.

6.4.6 Paths Between Images

In this section we present a new method for path sampling between binary images,

motivated by the auxiliary variable method Pettitt et al. (2003) used for path

sampling between different lattice boundary conditions. We describe the method

for path sampling between two binary images but it can be extended to more than

two images.

The path sampling formulation that we outlined in Section 6.3.3 works for any

path in the continuous parameter space, but we cannot integrate over the binary

image y from y(0) to y(1). Therefore to construct a path from y(0) to y(1) they

must both be present in the unnormalised density, let ε ∈ [0, 1] be an auxiliary
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Figure 6.5: Two estimates of the difference between log normalising constants,
one shown as circles and the other by crosses. Also the difference between these
estimates. The colours correspond to simulations: y(1) is black, y(2) is red, y(3) is
blue, y(4) is green, and y(5) is orange.

variable then

q(z|y(0),y(1),φ, ε) = exp

(
µ

n∑

i=1

zi + δ
∑

i∼j

1 [zi = zj ]

+ (1 − ε)

(
γ

n∑

i=1

∑

k∈νi

1
[
zi = y

(0)
k

])
+ ε

(
γ

n∑

i=1

∑

k∈νi

1
[
zi = y

(1)
k

]))
,

and ωε (t) = (φ, (ε1 − ε0) t+ ε0,y
(0),y(1)), where ε0 = 0 and ε1 = 1, is the desired

path. The path sampling identity is

log

[
Z (ωε

1)

Z (ωε
0)

]
=

(ε1 − ε0)

∫ 1

0

Eωε(t)

(
n∑

i=1

∑

k∈νi

γ
(
1
[
zi = y

(1)
k

]
− 1

[
zi = y

(0)
k

]))
dt.

Note that when 0.0 < ε < 1.0 there is a contribution from both y(0) and y(1), this
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is of no practical interest, we only make inference about z when ε = 0.0 or 1.0.

We now consider a simple test of this method. Suppose for y(0) with δ = 0.25

and γ = 0.5 we wish to know the difference of log normalising constants from

µ0 = −0.5 to µ1 = 0.5, that is

Θ
(
y(0),y(1), µ1 = 0.5, δ, γ, ε = 0

)
− Θ

(
y(0),y(1), µ0 = −0.5, δ, γ, ε = 0

)
.

We could use Equation (6.19) and integrate over µ between µ0 = −0.5 and µ1 = 0.5

or we could take a longer route from ε0 = 0.0 to ε1 = 1.0, then µ0 = −0.5 to

µ1 = 0.5 (with ε = 1.0) and then ε0 = 1.0 to ε1 = 0.0. Because both paths should

take us to the same destination we can test the effectiveness of path sampling

between images by comparing the results.

The PSEs along these two paths are illustrated in Figure 6.6. The kinks in the

longer path occur when the parameter we are path sampling over changes, but it

does appear to arrive at the correct value. The exact values were

Θ̃ (µ1 = 0.5, ε = 0.0) − Θ̃ (µ0 = −0.5, ε = 0.0) = −17.9353

and

Θ̃ (µ = −0.5, ε1 = 1.0) − Θ̃ (µ = −0.5, ε0 = 0.0)

+ Θ̃ (µ1 = 0.5, ε = 1.0) − Θ̃ (µ0 = −0.5, ε = 1.0)

+ Θ̃ (µ = 0.5, ε1 = 0.0) − Θ̃ (µ = 0.5, ε0 = 1.0) = −17.9114.

The difference between the two estimates is 0.0239 which is within the range of

differences in the robustness analysis of Section 6.4.5. This suggests this method

may give good results.

6.4.7 From Paths to Higher Dimensions

We have not exploited the full functionality of path sampling which would allow

arbitrary paths to be taken over the continuous parameter space. There are two

reasons for this. Firstly, we need the value of the log normalising constant at all

points in the continuous parameter space (discretized into a 0.1 grid) and the most

108



6.4. Path Sampling for the Ising Model

−20

−15

−10

−5

0

5

−0.4 −0.2 0 0.2 0.4 0 0.2 0.4 0.6 0.8 −0.4 −0.2 0 0.2 0.4 00.20.40.60.8

µµ εε

Θ̃
(µ
,ε

)
−

Θ̃
(−

0.
5,

0.
0)

Figure 6.6: Comparison of two path sampling paths: one direct over µ ∈ [−0.5, 0.5]
and one along ε ∈ [0, 1] then µ ∈ [−0.5, 0.5] then ε ∈ [1, 0].

efficient way to do this is to sample along the coordinates. Secondly, the expecta-

tion we need to evaluate becomes significantly more complicated when anything

other than componentwise paths are used, making it more computationally expen-

sive. Although a search for more optimal paths may be fruitless, because we are

trying to calculate the values over a large number of parameter sets in a high di-

mensional space, it is worth considering an extension to path sampling that allows

for integration over more than one dimension.

We will introduce the idea for the Ising model in Equation (6.6). Suppose we

need Θ(µ, δ) = log(Z(µ, δ)) for µ ∈ [−1, 1] and δ ∈ [0, 1]. This can be estimated by

the PSE along µ from −1 to 1 with δ set at {0.0, 0.1, . . . , 1.0} (see Section 6.4.5).

However, it can also be estimated by a certain integral over the area {(µ, δ)|µ ∈
[−1, 1], δ ∈ [0, 1]}.

We start the derivation of the area based method with the log normalising

constant for the symmetric Ising model,

Θ (µ, δ) = log

(
∑

z

exp

(
µ

n∑

i=1

zi + δ
∑

i∼j

1 [zi = zj ]

))
,
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differentiating with respect to µ and δ we obtain

∂2Θ

∂µ ∂δ
=

∑
z

∑n
i=1 zi

∑
i∼j 1 [zi = zj ] q (z|µ, δ)

∑
z q (z|µ, δ)

−
(
∑

z

∑n
i=1 ziq (z|µ, δ))

(∑
z

∑
i∼j 1 [zi = zj ] q (z|µ, δ)

)

(
∑

z q (z|µ, δ))2

= Eµ,δ

(
n∑

i=1

zi

∑

i∼j

1 [zi = zj ]

)
− Eµ,δ

(
n∑

i=1

zi

)
Eµ,δ

(
∑

i∼j

1 [zi = zj ]

)

= Covµ,δ

(
n∑

i=1

zi,
∑

i∼j

1 [zi = zj]

)
, (6.21)

where Eµ,δ (·) and Covµ,δ (·, ·) are the expectation and covariance with respect to

the density p (z|µ, δ). To find the difference in log normalising constants between

(µ0, δ0) and (µ1, δ1), we integrate both sides with respect to δ and µ and substitute

for Θ(µ1, δ0) and Θ(µ0, δ1) using the path sampling identities

Θ(µ1, δ0) = Θ(µ0, δ0) +

∫ µ1

µ0

∂Θ

∂µ
(µ, δ0) dµ and

Θ(µ0, δ1) = Θ(µ0, δ0) +

∫ δ1

δ0

∂Θ

∂δ
(µ0, δ) dδ

then

Θ (µ1, δ1) = Θ (µ0, δ0) +

∫ µ1

µ0

∂Θ

∂µ
(µ, δ0) dµ+

∫ δ1

δ0

∂Θ

∂δ
(µ0, δ) dδ

+

∫ µ1

µ0

∫ δ1

δ0

∂2Θ

∂µ∂δ
(µ, δ) dµ dδ

= Θ (µ0, δ0) +

∫ µ1

µ0

Eµ,δ0

(
n∑

i=1

zi

)
dµ+

∫ δ1

δ0

Eµ0,δ

(
∑

i∼j

1 [zi = zj ]

)
dδ

+

∫ µ1

µ0

∫ δ1

δ0

Covµ,δ

(
n∑

i=1

zi,
∑

i∼j

1 [zi = zj ]

)
dµ dδ. (6.22)

Unfortunately the area sampling estimate (ASE) is more computationally intensive

than the PSE for Θ(µ, δ) over µ ∈ [−1, 1] and δ ∈ [0, 1], where we calculate at 0.1

spacings along these coordinates. The PSE requires 11×21 = 231 expectations to

be computed, whereas the ASE requires 11 + 21 = 33 expectations and 11× 21 =

231 covariances to be computed.

Although this method does not improve on path sampling in terms of compu-

tational efficiency it does immediately suggest an additive approximation to path
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sampling if we assume that the covariance can be ignored. Approximate path

sampling methods are the next logical step because it is not practical to work with

the path sampling identity directly.

6.4.8 Approximating the Path Sampling Integral

Whilst path sampling does offer a way of estimating the normalising constant

which cannot be computed directly, it is not practical for our problem because we

require normalising constant estimates for many parameter combinations. With

a discretization spacing of 0.1 along each of the coordinates and 50000 MCMC

iterations for each expectation estimate we are getting errors of less than 5% (see

Section 6.4.1). It is not possible to reduce the number of iterations or increase

the discretization spacing without increasing this error, therefore we are going to

approximate the path sampling identity itself by a simple function that may be

computed more readily.

For lucidity we refer to our approximations of the path sampling identity as

“approximations” and the numerical estimates based on these approximations

“estimates”. To illustrate the efficacy of the eight approximations which follow

we would like to compare them to the true normalising constant, but because

this is not known we can only compare estimates based on our approximations

against the PSE. We refer to the difference between the estimates based on our

approximations and the PSE as “error”, and assume the error due to approxi-

mation will be greater than the error due to the numerical estimate. We will

be using the simple Ising model from Equation (6.6). We are not interested in

|µ| ≫ 0 which leads to all pixels having the same value in the model output, or

in δ < 0.0 which corresponds to negative dependence between pixels. By examin-

ing the model output we identify a sensible parameter space for the experiment,

{(µ, δ) |µ ∈ [−2.0, 2.0] , δ ∈ [0.0, 1.0]}. To estimate the log normalising constant

relative to the origin µ0 = 0.0, δ0 = 0.5 we path sample along µ and then δ. We

will compare the PSE to our eight approximations on the 5 × 5 grid described by

{(µ, δ) |µ ∈ {−2,−1, 0, 1, 2} , δ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}} .
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When path sampling along µ a 0.1 spacing is used and along δ we use 0.05. The

number of iterations at each step will be 50000. To calculate the PSE at each

point in this discretized parameter space requires the estimation of 41× 21 = 861

expectations. The PSE is shown in Figure 6.7(a).

Additive Approximation

As mentioned in Section 6.4.7, if the covariance term in Equation (6.22) is neglected

then we need only evaluate two componentwise integrals relative to the origin

(µ0 = 0.0, δ0 = 0.5),

Θ(µ, δ) − Θ(µ0, δ0) ≈
∫ µ

µ0

∂Θ

∂µ
(µ′, δ0) dµ′ +

∫ δ

δ0

∂Θ

∂δ
(µ0, δ

′) dδ′.

The additive approximation estimate (AAE) requires 41+21 = 62 expectations to

be estimated, as opposed to the 861 required for the PSE. The error in the AAE

is shown in Figure 6.7(b). The error is zero along the µ = 0 and δ = 0.5 where the

AAE and the PSE are equivalent. The fact that the error is up in two corners and

down in the other two indicates that although the log normalising constant itself

is not additive, there may be a power transform that is. This idea is explored later

with Tukey’s transformation for additivity.

Additive Linear Approximation

Another sensible approach to approximation is to consider the Taylor series expan-

sion of Θ (µ, δ) and then assume that terms over a certain order can be neglected.

The first-order Taylor series is

Θ (µ, δ) − Θ (µ0, δ0) ≈
∂Θ

∂µ
(µ0, δ0) (µ− µ0) +

∂Θ

∂δ
(µ0, δ0) (δ − δ0)

= Eµ0,δ0

(
n∑

i=1

zi

)
(µ− µ0) + Eµ0,δ0

(
∑

i∼j

1 [zi = zj ]

)
(δ − δ0) .

We call it the additive linear approximation because it is additive in the compo-

nents which in turn are linear approximations to the integrals. For the additive

linear approximation estimate (ALAE) we need to estimate only two expectations.

The error in the ALAE is shown in Figure 6.7(c). Clearly the ALAE is worse than
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(a) Path sampling estimate (PSE) of the log normalising constant.

−2
−1 0

1
2 0.0

0.2
0.4

0.60.8
1.0

−30

−20

−10

0

10

20

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−40
−35
−30
−25
−20
−15
−10
−5
0
5

10
15
20
25

µ

µ

δ

δ

E
rr

or

(b) Error in additive approximation estimate (AAE).
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(c) Error in additive linear approximation estimate (ALAE).

Figure 6.7: Path sampling estimate and approximations for the log normalising
constant relative to (µ = 0.0, δ = 0.5).
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(a) Error in componentwise linear approximation estimate (CLAE).
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(b) Error in second-order Taylor series approximation estimate (SOTSAE).
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Figure 6.8: Path sampling approximations for the log normalising constant relative
to (µ = 0.0, δ = 0.5).
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Figure 6.9: Hybrid and Tukey approximations for the log normalising constant
relative to (µ = 0.0, δ = 0.5).
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the AAE but this is due almost entirely to the linear approximation for the µ

term rather than the linear approximation for the δ term, which is not too bad.

The reason a linear approximation for the µ term is inappropriate is apparent in

Figure 6.7(a).

Componentwise Linear Approximation

An alternative to taking a first-order Taylor series of Θ (µ, δ), is to take a first-order

Taylor series of the µ and δ path sampling integrals,

Θ (µ, δ) − Θ (µ0, δ0) ≈ Eµ0,δ0

(
n∑

i=1

zi

)
(µ− µ0) + Eµ,δ0

(
∑

i∼j

1 [zi = zj ]

)
(δ − δ0) .

The subtle difference is that the second expectation is taken at µ rather than µ0,

that is to say the additive assumption has been dropped. The componentwise

linear approximation estimate (CLAE) requires 1 + 41 = 42 expectations to be

estimated. The error in the CLAE is shown in Figure 6.8(a). As expected, whilst

the linear approximation of the µ term is still poor, the approximation of the δ

term is better.

Second-Order Taylor Series Approximation

One way to improve upon the linear approximation is to use a higher-order Taylor

series. Starting with the componentwise linear approximation, if we now include

the second term from the Taylor series expansion, the approximation becomes

Θ (µ, δ) − Θ (µ0, δ0) ≈

Eµ0,δ0

(
n∑

i=1

zi

)
(µ− µ0) + Varµ0,δ0

(
n∑

i=1

zi

)
(µ− µ0)

2

2

+ Eµ,δ0

(
∑

i∼j

1 [zi = zj ]

)
(δ − δ0) + Varµ,δ0

(
∑

i∼j

1 [zi = zj ]

)
(δ − δ0)

2

2
.

For the second-order Taylor series approximation estimate (SOTSAE) we need to

estimate 41 + 1 = 42 expectations and variances. The error in the SOTSAE is

shown in Figure 6.8(b). This is worse than the first-order Taylor series approx-

imation because the second term in the Taylor series expansion for the µ term
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6.4. Path Sampling for the Ising Model

overcompensates for the error in the linear approximation. Including higher-order

terms may help to improve the approximation but will be more computationally

demanding.

Linear Approximation Along δ and Path Sampling Estimate Along µ

All efforts at approximating the path sampling integral for µ have proved fruitless,

so we will use the PSE for µ and only use the linear approximation for δ,

Θ (µ, δ) − Θ (µ0, δ0) ≈
∫ µ

µ0

∂Θ

∂µ
(µ′, δ0) dµ′ + Eµ,δ0

(
∑

i∼j

1 [zi = zj ]

)
(δ − δ0) .

The linear approximation along δ only estimate (LAADOE) requires 41+41 = 82

expectations to be estimated, which is still significantly less than the 861 required

for PSEs along µ and δ. The error in LAADOE is shown in Figure 6.8(c). This

has been the most successful approximation so far, with all the errors being less

than 10. However, to put this in perspective an error of 0.1 in the prediction of

the log normalising constant corresponds to an error of > 10% in the posterior

density using this normalising constant.

Hybrid of Linear and Additive Estimates for δ and Path Sampling Es-
timate Along µ

Figure 6.8(c) shows that the linear approximation for the δ term is better when the

magnitude of µ is large. This fact can be justified by looking again at Figure 6.7(a),

where it can be seen that the relationship of the log normalising constant with δ

does become more linear as the magnitude of µ increases. But when |µ| is small

adopting a linear approximation leads to unacceptable errors. The additive ap-

proximation suffers the opposite problem, when |µ| = 0 there is no error but as |µ|
increases the error increases. This suggests the use of some weighted combination

of the additive and linear approximations,

Θ (µ, δ) − Θ (µ0, δ0) ≈
∫ µ

µ0

∂Θ

∂µ
(µ′, δ0) dµ′ + (1 − f (µ))

∫ δ

δ0

∂Θ

∂δ
(µ0, δ

′) dδ′

+ f (µ) Eµ1,δ0

(
∑

i∼j

1 [zi = zj ]

)
(δ − δ0)
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where f (µ) is some function taking the values f(0) = 0 and f(±2) = 1 and

µ1 = 2. The hybrid approximation estimate (HAE) requires 41 + 21 + 1 = 63

expectations to be estimated. We tried a number of different functions for f(·)
but none improved noticeably upon the results of the previous approximation.

Figure 6.9(a) shows the error in the HAE when f(µ) = |µ|/2. The errors we are

particularly concerned about are those when µ = ±1 and δ 6= 0.5, because the

others were effectively constrained to be good.

Tukey’s Transformation for Additivity

When investigating the additive approximation to path sampling we mentioned

that although data may not be additive itself, we may find that when the data is

taken to a certain power the result will be additive.

In the exploratory data analysis of two-way tables, John Tukey developed a

method for transforming a two-way array so that it is better approximated by an

additive fit. This is known as Tukey’s transformation for additivity.

When data is placed in increasing order of their effects, and the additive fit

is poor, the residuals often exhibit a pronounced pattern. It is this pronounced

pattern that may be eliminated by a suitable power transform.

Suppose y is a positive array given by yij = κ+αi +βj + ραiβj where κ is large

compared to α and β. Now consider the binomial expansion of the data raised to

the power r,

yr
ij = κr

(
1 +

αi

κ
+
βj

κ
+
ραiβj

κ

)r

= κr

(
1 +

rαi

κ
+
rβj

κ
+
rραiβj

κ

+
r(r − 1)

2

(
· · ·+ 2αiβj

κ2
+ . . .

)
+ . . .

)
. (6.23)

So to be approximately additive we require

rραiβj

κ
+
r(r − 1)

2

2αiβj

κ2
= 0

which leads to r = 1 − ρκ.

To better visualise the pattern the data is placed in increasing order of their

effects. From Figure 6.7(a) we see this is true of δ but not of µ. However, this
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6.4. Path Sampling for the Ising Model

Error δ
0.00 0.25 0.50 0.75 1.00

0.0 −0.0973 2.9161 0.7799 −1.9296 −2.5182
0.5 −2.3337 −2.7791 −0.8021 2.7967 6.4979

µ 1.0 −2.1533 −2.3701 0.0692 2.3598 3.7459
1.5 1.4835 −0.2291 0.0816 −0.2522 −1.5649
2.0 6.5234 2.1148 −0.2719 −3.2636 −7.0844

Table 6.1: Error in prediction obtained using Tukey’s transformation for additivity.

problem is easily resolved by taking µ ≥ 0, where approximations will now be

compared at {(µ, δ)|µ ∈ {0.0, 0.5, 1.0, 1.5, 2.0}, δ ∈ {0.0, 0.25, 0.5, 0.75, 1.0}}.
Let y be defined by yij = Θ(µ = i/2, δ = j/4) − Θ(µ = 0.0, δ = 0.5) for

i, j = 0, 1, . . . , 4. First we fit the additive linear model yi,j ∼ κ + αi + βj to

obtain estimates κ̂, α̂ and β̂. The residuals ε̂ij = yij − κ̂ − α̂i − β̂i are shown

in Figure 6.9(b). Then we regress the residuals on to the explanatory variables

α̂iβ̂j. The slope of this regression line is ρ̂ and so the estimate of the power

transform is r̂ = 1− ρ̂κ̂. An additive linear model is fitted to the transformed data

yr̂
i,j ∼ κr + αr,i + βr,j to obtain estimates κ̂r, α̂r and β̂r. Finally the prediction is

ŷ = (κ̂r + α̂rβ̂
T
r )1/r̂. Figure 6.9(c) shows the error in this estimate, it substantially

improves upon the additive fit of the untransformed data and on all the other path

sampling approximations above. However, although the errors are small relative

to the other approximations, none are less than 0.05 (see Table 6.1). This is the

error in approximating the PSE rather than the log normalising constant, but if we

assume they are comparable an error of 0.05 corresponds to a 5% error in posterior

inference.

For Tukey’s transformation for additivity, if the data contains negative values a

constant must be added to the data to make it non-negative. However, it is not

necessary for the minimum, c, of the transformed data to be zero. We decided

to investigate how c affects the additivity of the transformed data. Figure 6.10

summarises the results for c ∈ [0.0, 1.0]. The maximum R-squared value occurs

when c = 0.29 but there is little change in the corresponding path sampling ap-

proximation (see Table 6.2).
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Figure 6.10: R-squared statistic for additive predictions of the transformed data
versus the minimum value c.

In this analysis we have used the very data we wish to predict, in practice the

row and column effects would be approximated by the additive path sampling

integrals (see Equation 6.7(b)), and Tukey’s transformation would be calculated

for some control data and assumed to be appropriate more generally. We have

investigated the effect of these further approximations and found that the results

did not worsen significantly.

Although this method has not been successful it has highlighted a very important

problem in trying to approximate the log normalising constant. Using this method

we were able to find a prediction that fitted the data very well (R-squared =

0.9987), but because we need to take the exponential for posterior inference the

prediction is still not good enough.

The normalising constant has proved to be an insurmountable problem in the

use of the Ising model for the likelihood of the observed data given the simulator

output. Furthermore, to generate sensible results for the flood inundation appli-

cation the Ising model would need to be heterogeneous, which would add further
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6.4. Path Sampling for the Ising Model

Error δ
0.00 0.25 0.50 0.75 1.00

0.0 0.0050 2.7836 0.5880 −2.1546 −2.7653
0.5 −2.4493 −2.7439 −0.7617 2.8428 6.5502

µ 1.0 −2.3482 −2.3202 0.1332 2.4319 3.8240
1.5 1.2472 −0.1703 0.1555 −0.1720 −1.4819
2.0 6.2611 2.1813 −0.1919 −3.1805 −7.0020

Table 6.2: Error in prediction obtained using Tukey’s transformation for additivity
with minimum value c = 0.29.

computational expense. In the next chapter we discuss an extension of the binary

channel model with the emphasis upon developing a model which is tractable.
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Chapter 7

The Heterogeneous Binary
Channel Model

In Chapter 6 we tried the Ising model for the likelihood of the observed flood ex-

tent given a simulation of flood extent. Unfortunately, calibration and calibrated

prediction were not possible using the Ising model because of an intractable nor-

malising constant. In this chapter we extend the BC model from Section 5.2 to

represent heterogeneity and spatial dependence, the resulting model is called the

heterogeneous binary channel (HBC) model. The aim in extending the BC model

is to develop a likelihood for which calibration and calibrated prediction are possi-

ble. We describe calibration and calibrated prediction using the HBC model and

present an MCMC algorithm for estimation. To investigate the effect of allowing

p(zi 6= yi|yi,φ) > 0.5, we introduce the positive heterogeneous binary channel

(PHBC) model for which this situation is prevented. Heterogeneity is hard to

visualise in two dimensions, so a one-dimensional example is used to illustrate the

properties of the BC, HBC and PHBC models. Examples are also given using

the Buscot dataset, and we discuss how within-model sampling may be used to

improve mixing in the MCMC algorithm.

7.1 Introduction

In this chapter we extend the BC model introduced in Chapter 5 to allow for

heterogeneity in the regression of z on y. The Ising model discussed in Chapter 6

included spatial dependence and blur, but not heterogeneity, and could not be
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applied at the scale of real flood events because of the intractable normalising

constant. By returning to the BC model to make this extension we hope to develop

a model that can be implemented at the scales required.

Heterogeneity is introduced to reduce the effect of local errors on global fit.

In order to understand the implications of particular values of α and β in the

BC model, assume α and β are fixed, and suppose y⋆ can be obtained from y by

changing one true-negative to a false-positive, more explicitly ∃k s.t. zk = yk = −1,

y⋆
k = 1, and y⋆

j = yj, ∀j 6= k. Then, from Equations (5.5) and (5.6), assuming

p(y) = p(y⋆)

p(y⋆|z)

p(y|z)
=

1 − α

β
.

The nature of the flood inundation problem means the number of trues, n1,1 +

n−1,−1, will typically be much greater than the number of falses, n−1,1 + n1,−1.

This suggests p(zi = yi|yi) should be large, for example α = β = 0.8 leading

to p(y⋆|z)/p(y|z) = 0.25. A posteriori y is four times more probable than y⋆,

although they differ by only one pixel, and this ratio is independent of the image

size. We would favour a larger posterior ratio, say p(y⋆|z)/p(y|z) = 0.9, but,

assuming α = β, this requires α = β = 0.53, so given y we are still very uncertain

about the value of z. By introducing heterogeneity we allow p(zi = yi|yi, αi, βi)

to vary across the floodplain. For example it may be close to 0.5 near the flood

boundary and close to 1.0 away from it.

A posteriori y⋆ should be less probable than y, because the former is obtained

from the latter by changing one true-negative to a false-positive. However, where

this change is made is also important. If the new false-positive is part of a region

of false-positives it should be penalised less than if it is entirely isolated from

other false-positives. We introduce spatial dependence between the distributed

parameters so a block of t false-positives is penalised less than t individual false-

positives (similarly false-negatives).
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Figure 7.1: The relationship between µα and p(zi = 1|yi = 1, µα).

7.2 The Heterogeneous Binary Channel Model

In this section we describe the HBC model equations and show how the model may

be used within our Bayesian framework for calibration and calibrated prediction.

7.2.1 Likelihood

When the BC model was introduced in Section 5.2, a parameterisation was adopted

that meant the posterior distributions could be calculated analytically. However,

this parameterisation does not lend itself to a natural heterogeneous extension,

and we therefore consider the following alternative parameterisation that makes

use of the logistic transform,

p(zi = 1|yi = 1, µα) =
exp(µα)

1 + exp(µα)
(= α) and (7.1)

p(zi = −1|yi = −1, µβ) =
exp(µβ)

1 + exp(µβ)
(= β) (7.2)

where zi are conditionally independent given yi, and we take priors µα ∼ N (να, σ
2
α)

and µβ ∼ N (νβ, σ
2
β). Figure 7.1 shows how p(zi = 1|yi = 1, µα) changes with the

value of µα.
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The corresponding HBC model is

p(zi = 1|yi = 1, µα, εα,i) =
exp(µα + εα,i)

1 + exp(µα + εα,i)

p(zi = −1|yi = −1, µβ, εβ,i) =
exp(µβ + εβ,i)

1 + exp(µβ + εβ,i)

where zi are conditionally independent given yi, and µα, µβ ∈ R and εα, εβ ∈ R
n.

The likelihood is

p(z|y, µα, µβ, εα, εβ) =

n∏

i=1

(
exp

((
zi+1

2

)
(µα + εα,i)

)

1 + exp(µα + εα,i)

) yi+1

2
(

exp
((

1−zi
2

)
(µβ + εβ,i)

)

1 + exp(µβ + εβ,i)

) 1−yi
2

.

7.2.2 Prior Distributions

We now define the conditional (or marginal) distributions for each node of the

DAG in Figure 5.2. The node φ now corresponds to the parameters µα, µβ, εα

and εβ, each of which is independent of the others.

The prior for m is still discrete uniform. Given m, y and y′ are deterministic,

being y(m) and y′(m) respectively, see Equations (5.3) and (5.4).

For the HBC model parameters we take

µα ∼ N (να, σ
2
α), (7.3)

µβ ∼ N (νβ, σ
2
β), (7.4)

εα ∼ MVN
(
0, τ 2

α(I − λαC)−1
)

and (7.5)

εβ ∼ MVN
(
0, τ 2

β(I − λβC)−1
)

(7.6)

where να, νβ ∈ R, σα, σβ , τα, τβ ∈ R≥0, λα, λβ ∈ [0, 1), and

Ci,j =





1
4

if i and j are neighbours

0 otherwise,
(7.7)

and we assume toroidal boundary conditions, so the East/South neighbours of

pixels in the last column/row are pixels in the first column/row. The toroidal as-

sumption means the precision matrix I −λαC is block-circulant (see Section 8.3).
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Block-circulant matrices can be related to the two-dimensional fast Fourier trans-

form for fast matrix inversion and fast multivariate Normal sampling (see Rue

and Held, 2005). Although toroidal boundary conditions seem inappropriate for

the flood inundation application, any adverse boundary effects can be reduced

by adding an artificial frame around the data (see Weir and Pettitt, 1999). For

an overview of other approaches to the boundary condition problem see Cressie

(1993).

The hyperparameters σα, σβ , τα, τβ , λα and λβ are fixed. If τα = τβ = 0, then

εα = εβ = 0 and the HBC model degenerates to the BC model of Equations (7.1)

and (7.2).

7.2.3 Posterior, Calibration and Calibrated Prediction

The posterior is

p(m,µα, µβ, εα, εβ|z) ∝

n∏

i=1

(
exp

((
zi+1

2

)
(µα + εα,i)

)

1 + exp (µα + εα,i)

) y
(m)
i

+1

2
(

exp
((

1−zi
2

)
(µβ + εβ,i)

)

1 + exp (µβ + εβ,i)

) 1−y
(m)
i
2

exp

(
− 1

2σ2
α

(µα − να)2 − 1

2σ2
β

(µβ − νβ)2

− 1

2τ 2
α

εT
α(I − λαC)εα − 1

2τ 2
β

εT
β (I − λβC)εβ

)
. (7.8)

For the BC model of Section 5.2 it was possible to integrate the posterior to

find analytical expressions for p(m|z) and p(z′i = 1|z). For the HBC model it is

not possible to find these quantities analytically, so we will estimate them using

MCMC (see Section 3.2).

MCMC is used to generate an estimate sample from the posterior

p(m,µα, µβ, εα, εβ|z),
{
m(k), µ

(k)
α , µ

(k)
β , ε

(k)
α , ε

(k)
β |k = 1, . . . , K

}
. Analytically, we

would obtain p(m|z) from p(m,µα, µβ, εα, εβ|z) by integrating out the other pa-

rameters, but given a sample from the joint posterior, if we simply discard the

values of the other parameters then
{
m(k)|k = 1, . . . , K

}
is a sample from p(m|z).

To make calibrated predictions about a future event z′ based on simulations

of the future event y′(1),y′(2), . . . ,y′(M), we let p(z′|y′, µα, µβ, εα, εβ) be a HBC
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7.3. MCMC Algorithm

model, similar to p(z|y, µα, µβ, εα, εβ), and assume the model parameters are the

same for each. Then the calibrated predictions are

p(z′i = 1|z) =

M∑

m=1

∫∫∫∫
p(z′i = 1|y′(m), µα, µβ, εα, εβ)

× p(m,µα, µβ, εα, εβ|z) dµα dµβ dεα dεβ

≈ 1

K

K∑

k=1

p(z′i = 1|y′(m(k)), µ(k)
α , µ

(k)
β , ε(k)

α , ε
(k)
β ). (7.9)

7.3 MCMC Algorithm

In this section we describe an MCMC algorithm for sampling from the posterior

in Equation (7.8), and then discuss the practical issues in using this algorithm.

Initial values must be defined for the Markov chain, we choose to set the pa-

rameters of the HBC model to their distribution means, µα = να, µβ = νβ and

εα = εβ = 0, and take an arbitrary simulation, m = 1.

7.3.1 m Update

In flood inundation applications the simulations y(m), m = 1, 2, . . . ,M can be

ordered according to the friction values θ(m) that we used to generate them, or

by some pixel statistic, e.g. the number of positives, n
(m)
·,1 =

∑n
i=1 1[y

(m)
i = 1].

These orderings may be exploited in the proposal distribution to improve mixing.

For example for the probability of proposing m′ from m we may take q(m′|m) ∝
∣∣θ(m) − θ(m′)

∣∣−1
.

Propose a new value m′ from q(m′|m), then the proposal ratio is

q(m|m′)/q(m′|m), and the posterior ratio is

p(m′, µα, µβ, εα, εβ|z)

p(m,µα, µβ, εα, εβ|z)
=

n∏

i=1

(
exp

((
zi+1

2

)
(µα + εα,i)

)

1 + exp(µα + εα,i)

) y
(m′)
i

−y
(m)
i

2

×
(

exp
((

1−zi
2

)
(µβ + εβ,i)

)

1 + exp(µβ + εβ,i)

) y
(m)
i

−y
(m′)
i

2

. (7.10)

The acceptance probability for m′ is the minimum of 1.0 and the product of the
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posterior ratio and proposal ratio. In the next section we describe an algorithm

for fast sampling from an arbitrary discrete distribution, such as q(m′|m).

7.3.2 Robin Hood Method for Sampling from a Discrete

Distribution

Let X be a discrete random variable taking values in {1, 2, . . . ,M}. If X has a

discrete uniform distribution on {1, 2, . . . ,M} and u is a sample from U(0, 1], then

x = ⌈Mu⌉ (the smallest integer greater than Mu) is a sample from the distribution

of X.

More generally, let f(x) = P (X = x) be the probability mass function of X.

The distribution function F (x) =
∑

i≤x f(x) is a step function, and if u is a sample

from U(0, 1] then x = F−1(u) is a sample from X. A very simple practical way of

finding a sample from X given u is to identify that x ∈ {1, 2, . . . ,M} for which

F (x− 1) < u ≤ F (x), but this is very inefficient.

Marsaglia et al. (2004) describe a number of methods for fast generation of

discrete random variables. The Robin Hood method, originally devised by Walker

(1977), requires some preliminary calculations to be done offline and then sampling

is very efficient. We describe a simple example of the method from which the

extension to the general case is obvious.

Suppose X takes values 1, 2, 3 with probabilities 2/9, 6/9 and 1/9. The target

is to form a square histogram, which has three equal-width columns and a height

of 3/9. The bottom part of the column belongs to the index 1, 2, 3 and the top

part to the index of the variable that is represented in the top row of that column.

Start by forming a standard histogram of the probabilities and superimpose the

target square histogram:
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2 2 2

2 2 2

2 2 2

2 2 2

1 1 1 2 2 2

1 1 1 2 2 2 3 3 3

The Robin Hood method is iterative, we take from the “richest” and give to the

“poorest” until the histogram is square:

2 2 2

2 2 2 2 2 2

1 1 1 2 2 2 2 2 2

1 1 1 2 2 2 3 3 3

→
2 2 2 2 2 2 2 2 2

1 1 1 2 2 2 2 2 2

1 1 1 2 2 2 3 3 3

The top part of the columns belong to K = (2, 2, 2), and the cumulative division

point for each column is V = (2/9, 3/9 + 3/9 = 6/9, 6/9 + 1/9 = 7/9). The rule

for generating a random number from this distribution is:

1. u ∼ U(0, 1],

2. j = ⌈3u⌉; if u < Vj return j, else return Kj.

The vectors K and V can be calculated offline. This can be done for any discrete

probability distribution.

For a general discrete random variable X, first initialise Ki = i and Vi = i/M

then repeat the following steps M − 1 times:

1. Find the largest and smallest probabilities, say f(j) and f(i).

2. Set Ki = j, Vi = (i− 1)/M + f(i).

3. Replace f(j) by f(j) − (1/M − f(i)) and f(i) by 1/M .

Then given u ∼ U(0, 1], j = ⌈Mu⌉ and a sample from X is j if u < Vj and Kj

otherwise.
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For the update of the simulation index K and V must be computed offline for

eachm, but, crucially, the vectors do not change throughout the MCMC algorithm.

7.3.3 µα and µβ Updates

Propose a new value µ′
α from U [µα − fα, µα + fα], then the proposal ratio will

always be 1.0 and the posterior ratio is

p(m,µ′
α, µβ, εα, εβ|z)

p(m,µα, µβ, εα, εβ|z)
=

n∏

i=1

(
exp

((
zi + 1

2

)
(µ′

α − µα)

)
1 + exp(µα + εα,i)

1 + exp(µ′
α + εα,i)

) y
(m)
i

+1

2

exp

(
− 1

2σ2
α

(
(µ′

α − να)2 − (µα − να)2
))

.

The acceptance probability is the minimum of 1.0 and the posterior ratio. The

update for µβ is similar.

7.3.4 εα and εβ Updates

We update εα pixel by pixel. Fortunately the full conditionals take the very simple

form

εα,i|εα,−i ∼ N
(
λα

4

∑

j∈δi

εα,j, τ
2
α

)

where δi is the set of neighbours of pixel i. For pixel i propose a new value ε′α,i

from U [εα,i − dα, εα,i + dα] so the proposal ratio is 1.0. Then the posterior ratio is

p(m,µα, µβ, ε
′
α,i, εα,−i, εβ|z)

p(m,µα, µβ, εα,i, εα,−i, εβ|z)
=

(
exp

((
zi + 1

2

)
(ε′α,i − εα,i)

)
1 + exp(µα + εα,i)

1 + exp(µα + ε′α,i)

) y
(m)
i

+1

2

× exp

(
− 1

2τ 2
α

(ε′α,i − εα,i)

(
ε′α,i + εα,i −

λα

2

∑

j∈δi

εα,j

))
.

The acceptance probability is the minimum of 1.0 and the posterior ratio. The

update for εβ is similar.
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7.3.5 Underflow and Overflow

The algorithm is written in the C programming language. To calculate the accep-

tance probabilities we must take the product of many terms. When this product is

very small the computer may equate it to zero, this is called underflow. When the

product is very large the computer may equate it to infinity, this is called overflow.

Computers are far better at dealing with sums, so rather than calculate the

products directly we take the logarithm and calculate the sum. For example, the

logarithm of Equation (7.10) for the m update is

n∑

i=1

(
y

(m′)
i − y

(m)
i

2

)((
zi + 1

2

)
(µα + εα,i) −

(
1 − zi

2

)
(µβ + εβ,i)

− log(1 + exp(µα + εα,i)) + log(1 + exp(µβ + εβ,i))

)
.

The terms of the form log(1+exp(x)) require special treatment because if x is too

small or too big the exp(·) function can underflow or overflow respectively. Note

that

lim
x→−∞

log(1 + exp(x)) = 0

and, from log(1 + exp(x)) = x+ log(exp(−x) + 1), that

lim
x→∞

log(1 + exp(x)) = x.

To calculate log(1 + exp(x)) within the code we first check the value of x: if

x < −50 we return 0.0; if x > 50 we return x; if −50 ≤ x ≤ 50 underflow and

overflow are not a problem using double precision on a Pentium 4 2GHz processor

with 512MB of RAM, and we evaluate the expression directly.

7.4 Forcing Positive Regression

When we introduced the BC model in Section 5.2 we made no issue of the fact that

the parameters α and β can be less than 0.5. It would certainly be very peculiar

if either of these parameters were less than 0.5, for example if α < 0.5 then

p(zi = −1|yi = 1, α) > p(zi = 1|yi = 1, α)
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for all i ∈ {1, . . . , n}. However, although possible, the posterior probability α

or β are less than 0.5 is very small because for typical z and y the number of

trues is much greater than the number of falses, and therefore the likelihood is

much greater for α, β > 0.5. The only way the posterior would favour values of

α, β < 0.5 is if the prior strongly requires this.

The HBC model differs from the BC model in that p(zi = 1|yi = 1, µα, εα,i) and

p(zi = −1|yi = −1, µβ, εβ,i) may be different for different i. If there is no spatial

dependence, λα = λβ = 0.0, then it is entirely feasible, even likely, that posterior

values of µα and εα,i lead to p(zi = 1|yi = 1, µα, εα,i) < 0.5 for some i, similarly

for p(zi = −1|yi = −1, µβ, εβ,i). In this section we look at a variation of the HBC

model in which these probabilities are constrained to be ≥ 0.5, we will call it the

positive heterogeneous binary channel (PHBC) model. The model equations are

p(zi = 1|yi = 1, µα, εα,i) =
1 + 2 exp(µα + εα,i)

2 + 2 exp(µα + εα,i)

p(zi = −1|yi = −1, µβ, εβ,i) =
1 + 2 exp(µβ + εβ,i)

2 + 2 exp(µβ + εβ,i)

where µα, µβ, εα and εβ have the same priors as before. There are many con-

structions that encode this constraint, this one is chosen so p(zi = 1|yi = 1, µα =

0, εα,i = 0) = 0.75.

The posterior distribution is

p(m,µα, µβ, εα, εβ|z) =

n∏

i=1

(
(1 + 2 exp(µα + εα,i))

zi+1

2

2 + 2 exp(µα + εα,i)

) yi+1

2
(

(1 + 2 exp(µβ + εβ,i))
1−zi

2

2 + 2 exp(µβ + εβ,i)

)1−yi
2

exp

(
− 1

2σ2
α

(µα − να)2 − 1

2σ2
β

(µα − νβ)2

− 1

2τ 2
α

εT
α(I − λαC)εα − 1

2τ 2
β

εT
β (I − λβC)εβ

)
.

As for the HBC model, calibration and calibrated prediction cannot be done

analytically and so we use MCMC. The algorithm used is identical to that used

for the HBC model (see Section 7.3) except for the likelihood ratio.
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7.5 One-Dimensional Toy Example

In this section we demonstrate the impact of different prior assumptions, i.e. dif-

ferent models and different hyperparameter settings, on posterior inference in a

toy example.

The heterogeneous characteristics of the HBC model are difficult to visualise

using a two-dimensional dataset. We introduce a simple one-dimensional dataset

that aims to represent some of the features we expect in two-dimensional flood

inundation data.

Figure 7.2 shows the one-dimensional dataset for our toy example. The dataset

consists of one observation, z ∈ {−1, 1}n, and 29 simulations, y(m) ∈ {−1, 1}n,

m = 1, . . . , 29. Each is n = 50 pixels long, and only the central 10 pixels of the

observed data are positive. There are no false-negatives. We consider the ways in

which to add t false-positives for t = 1, 2, . . . , 10: first as a block away from the

boundary,

m ∈ {2, 4, 7, 10, 13, 16, 19, 22, 25, 28}

second as a block on the boundary,

m ∈ {1, 3, 6, 9, 12, 15, 18, 21, 24, 27}

and third as t isolated errors,

m ∈ {2, 5, 8, 11, 14, 17, 20, 23, 26, 29}.

Note that y(2) qualifies for both the individual error and block (of 1) away from

the boundary categories.

The two-dimensional HBC and PHBC models (see Sections 7.2 and 7.4) require

a small modification for use with one-dimensional data. The two-dimensional

toroidal boundary conditions become cyclic boundary conditions in one dimension,

and the precision matrix in Equations (7.5) and (7.6) becomes

Ci,j =






1
2

if i and j are neighbours

0 otherwise.
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Figure 7.2: One-dimensional toy example for illustrating the characteristics of the
HBC and PHBC models. Pixel values of 1 are grey and −1 are white.
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In the following discussion we will refer to the two parameterisations of the BC

model, introduced in Sections 5.2 and 7.2, as the (α, β) BC model and the (µα, µβ)

BC model respectively.

In Section 5.3 we discussed how to make the (α, β) BC model penalise false-

positives more than false-negatives (or vice-versa) by choice of the hyperparameters

a, b, c, d, but for our toy example there are no false-negatives so in all the examples

in this section we take να = νβ = ν, σα = σβ = σ, λα = λβ = λ and τα = τβ = τ .

For comparison to the (α, β) BC model, and for ease of interpretation, we plot

the density induced on αi = p(zi = 1|yi = 1, µα, εα,i) and βi = p(zi = −1|yi =

−1, µβ, εβ,i) by the priors µα ∼ N (να, σα), µβ ∼ N (νβ, σβ), εα ∼ MVN (0, τα(I −
λαC)−1) and εβ ∼ MVN (0, τβ(I − λβC)−1) in the examples which follow. As C

is a block-circulant matrix the marginal variance for εα,i ∼ N (0, s2
α) is τ 2

α times

the mean of the inverse eigenvalues, s2
α = τ 2

α/n
∑n−1

i=0 (1 − λα cos(2πi/n))−1 (see

Moran (1973) and Section 8.3). Let ψi = µα + εα,i so αi = exp(ψi)/(1 + exp(ψi)),

then because µα and εα,i are independent ψi ∼ N (να, σ
2
α + s2

α), and by the change

of variables formula

p(αi) =
1

αi(1 − αi)
√

2π(σ2
α + s2

α)
exp

(
− 1

2(σ2
α + s2

α)

(
log

(
αi

1 − αi

)
− να

)2
)
.

The prior for βi is found similarly. (For examples see Figures 7.4(a) and 7.4(b).)

The posteriors for µα, µβ, εα and εβ given z are not visually very informative,

so we choose to plot the densities induced on αi = p(z′i = 1|y′i = 1, µα, εα,i) and

βi = p(z′i = −1|y′i = −1, µβ, εβ,i) by the posterior p(µα, µβ, εα, εβ|z). Given the

MCMC sample for µα and εα,i, {µ(k)
α , ε

(k)
α,i : k = 1, . . . , K}, we calculate p(z′i =

1|y′i = 1, µ
(k)
α , ε

(k)
α,i) for k = 1, . . . , K. We plot the mean p(z′i = 1|y′i = 1, z), and

the upper and lower quartiles to show spread. For the BC model these plots will

always consist of horizontal lines, but are included nevertheless for comparison to

the HBC model (see Figures 7.3(c) and 7.3(d)).

7.5.1 (µα, µβ) BC Model Example

We discussed the properties of the (α, β) BC model in Section 5.3. Rather than

repeat that analysis here, we will consider how the properties relate to the (µα, µβ)
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BC model. A small set of summary results for the (µα, µβ) BC model are presented

for comparison to the HBC model (see Figure 7.3).

We found it necessary to take priors for α and β that favoured values very close

to 0.5, to prevent the posterior for the simulation index p(m|z) being zero for

almost all m not equal to the posterior mode. In the (µα, µβ) BC model examples

which follow we will take ν = 0.0 corresponding to a prior expectation of 0.5 for

α and β. The relationship between the standard deviation σ and the spread of α

and β about 0.5 is not obvious so we present a summary using different values for

σ in Figure 7.3.

The prior distributions induced on α = p(zi = 1|yi = 1, µα) and β = p(zi =

−1|yi = −1, µβ) by µα ∼ N (0, σ2) and µβ ∼ N (0, σ2) are shown in Figures 7.3(a)

and 7.3(b). Note that these prior distributions become bimodal as σ increases. At

first bimodal distributions seem inappropriate. However, for the flood inundation

problem we are uncertain about the value of the observed data given a simulator

output only near the flood boundary. Within the channel and on the floodplain

away from the boundary we expect the value of the observed data to be the same

as a simulator output, except where the simulator is consistently wrong, where we

expect the value of the observed data to be the opposite of a simulator output.

The posterior distributions induced on α = p(z′i = 1|y′i = 1, µα) and β = p(z′i =

−1|y′i = −1, µβ) by p(µα, µβ|z), are shown in Figures 7.3(c) and 7.3(d). With

every doubling of σ, p(z′i = 1|y′i = 1, z) and p(z′i = −1|y′i = −1, z) increase,

although the rate of increase decreases. Also, p(z′i = −1|y′i = −1, z) > p(z′i =

1|y′i = 1, z) because the ratio of true-negatives to false-negatives is greater than

the ratio of true-positives to false-positives. The lines are horizontal because the

model parameters are homogeneous, but (with reference to the data in Figure 7.2)

we would like to allow p(z′i = y′i|y′i, z) to be larger in some regions than others,

and possibly even < 0.5 in regions of systematic error.

The posterior for the simulation index, p(m|z), is plotted versus the number of

falses, n
(m)
−1,1 +n

(m)
1,−1, in Figure 7.3(e). As σ increases, falses are penalised more and

p(m|z) becomes negligible for more m. Note that the different configurations of
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falses have no bearing on p(m|z).

Figure 7.3(f) shows the calibrated predictions. As σ increases |p(zi = 1|z) −
0.5| generally increases, expressing more confidence in our simulations. However,

|p(z5 = 1|z) − 0.5| decreases slightly – the BC model does not correct for the

systematic error at pixel 5 in the simulations.

We are interested in the two tasks of calibration and calibrated prediction, about

which we can form two objectives:

1. Our simulations do not differ substantially, therefore for calibration we do not

want falses to be penalised too much otherwise p(m|z) will be nonnegligible

for very few m.

2. The simulations and observed data are close, therefore for calibrated pre-

diction we do not want |p(z′i = 1|z) − 0.5| to be close to 0.0 because this

suggests that we learn nothing about the true flood from our simulations.

Unfortunately using the BC model we are not able to achieve these two objectives

simultaneously. With these objectives in mind we now discuss the HBC model.

7.5.2 HBC Model Examples

Figure 7.4 illustrates the effect of increasing τ in the HBC model with no depen-

dence, λ = 0.0. As τ increases p(m|z) becomes nonnegligible for morem. Compare

this to increasing σ which has the opposite effect, p(m|z) becomes zero for more

m (see Figure 7.3(e)). At the same time the calibrated prediction p(z′i = 1|z)

becomes closer to 0.0 or 1.0, as when we increase σ. In contrast to increasing σ,

increasing τ reduces the effect of the false-positives around pixel 5 on the calibrated

prediction. The plots of the distributions induced on αi = p(z′i = 1|y′i = 1, µα, εα,i)

and βi = p(z′i = −1|y′i = −1, µβ, εβ,i) by p(µα, µβ, εα, εβ|z) highlight the difference

from the homogeneous model (see Figures 7.4(c) and 7.4(d)). The model adjusts

to each pixel individually so local errors cannot affect the global fit of the model.

The problem with treating each pixel independently is that if we fix µα = µβ = 0.0

trues and falses are equally good, and all simulations will be given equal posterior

weight, which is clearly not realistic.
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(a) Prior induced on α by µα ∼ N (να, σ
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(b) Prior induced on β by µβ ∼ N (νβ , σ
2
β).
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(f) Calibrated prediction. For comparison
p(z′i = 1) is shown (dashed lines).

Figure 7.3: Four examples of calibration and calibrated prediction using the
(µα, µβ) BC model. The mean ν = 0.0 in all cases and the standard deviation
σ is 0.5 (black), 1.0 (red), 2.0 (blue) and 4.0 (green).
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In relation to the flood inundation application, it is likely that the flood extent

that we calibrate the model on is less extreme than the one we wish to predict.

Therefore the flood extent boundary will be different and, for example, where

false-positives occurred in calibration they may not occur in prediction. To reduce

these effects we introduce spatial dependence to εα and εβ.

Figure 7.5 shows the effect of spatial dependence in the HBC model. The effect

of spatial dependence can be observed in the distributions induced on αi = p(z′i =

1|y′i = 1, µα, εα,i) and βi = p(z′i = −1|y′i = −1, µβ, εβ,i) by p(µα, µβ, εα, εβ|z).

For example, p(z′i = −1|y′i = 1, z) is larger at pixel 10, which is the centre of a

region of false-positives in 7 simulations, than at pixel 46, which is an isolated

false-positive in 5 simulations (see Figure 7.2). The posterior for the simulation

indexes p(m|z) now depends on the configuration of falses as well as the number

of them. For a given number of falses, p(m|z) is smallest for the isolated falses

configuration, as expected. However, p(m|z) is largest for the isolated blocks

configuration. We expected blocks of falses on the boundary to be “best” because

these are most likely in the flood inundation application, but spatial dependence

causes 1−αi = p(zi = −1|yi = 1, µα, εα,i) to be small near the central 10 observed

wet pixels.

In the examples of the HBC model with and without dependence we see that

p(z′ 6= y′i|y′i, z) > 0.5 occurs (for example see Figure 7.5(c)). This is not the same

as saying z′i is independent of y′i, for which p(z′ 6= y′i|y′i, z) = 0.5, it expresses

confidence in the simulator being wrong. This effect can be reduced by taking

ν > 0.0 – increasing ν has the dual effect of increasing p(z′i = 1|z) and making

p(m|z) zero for more m.

7.5.3 PHBC Model Example

Requiring ν > 0.0 reduces the probability of p(z′i 6= y′i|y′i, z) > 0.5 but the pos-

sibility remains. Using the positive heterogeneous binary channel (PHBC) model

makes it impossible. Figure 7.6 shows a sample of results using the PHBC model.

Two issues arise in using the PHBC model: first, the effect of the false-positives

around pixel 5, that occur in many of the simulations, cannot be reduced as they
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(f) Calibrated prediction. For comparison
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Figure 7.4: Four examples using the HBC model and changing τ . The hyperpa-
rameters are ν = 0.0, λ = 0.0 and σ = 0.5 in all cases; and τ is 0.5 (black), 1.0
(red), 2.0 (blue) and 4.0 (green). 140
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(f) Calibrated prediction. For comparison
p(z′i = 1) is shown (dashed lines).

Figure 7.5: Four examples using the HBC model and changing τ . The hyperpa-
rameters are ν = 0.0, λ = 0.9 and σ = 0.5 in all cases; and τ is 0.5 (black), 1.0
(red), 2.0 (blue) and 4.0 (green). 141
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can using the HBC model; and second, p(m|z) can only be made nonnegligible for

more m by reducing the correlation between y and z.

7.5.4 Markov Chain Convergence and Undesirable Model
Properties

MCMC relies on the convergence of the Markov chain to the distribution of interest,

if the time to convergence is very high then a realisation of the Markov chain will

be a poor estimate of a sample from the distribution of interest. For the HBC and

PHBC models mixing of the MCMC algorithm is poor for some hyperparameter

values. For the continuous parameters µα, µβ, εα and εβ mixing can normally be

improved by tuning the width of the uniform proposal, but this is not so for the

simulation index m.

Suppose we have two simulations m(1) and m(2) such that p(m(1)|z) = p(m(2)|z)

and

p(µ(1)
α , µ

(1)
β , ε(1)

α , ε
(1)
β |m(1), z) = p(µ(2)

α , µ
(2)
β , ε(2)

α , ε
(2)
β |m(2), z)

but

p(µ(1)
α , µ

(1)
β , ε(1)

α , ε
(1)
β |m(1), z) ≫ p(µ(1)

α , µ
(1)
β , ε(1)

α , ε
(1)
β |m(2), z)

for some parameters µ
(1)
α , µ

(1)
β , ε

(1)
α , ε

(1)
β , µ

(2)
α , µ

(2)
β , ε

(2)
α , ε

(2)
β . Let the value of the

Markov chain at the kth iteration be m = m(1), µα = µ
(1)
α , µβ = µ

(1)
β , εα = ε

(1)
α

and εβ = ε
(1)
β , and suppose the proposed value of the simulation index from a

discrete uniform distribution on {1, . . . , m(1) − 1, m(1) + 1, . . . ,M} is m′ = m(2).

Then it is very unlikely that this proposal will be accepted. Accepting that the

probabilities will not in general be exactly equal, this example is indicative of the

mixing problem for the simulation index update.

To improve mixing we rejected the discrete uniform proposal for the simulation

index in favour of

q(m′|m) ∝
(

n∑

i=1

1[y
(m)
i 6= y

(m′)
i ]

)−1

for m′ ∈ {1, . . . , m − 1, m+ 1, . . . ,M}. This improved mixing quite considerably

for some prior specifications but for others mixing is still poor (see Figure 7.7).

In these latter cases it will be necessary to explore other methods for generating
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Figure 7.6: Three examples using the PHBC model: ν = 0.0, σ = 0.5, λ = τ = 0.0
(black); ν = 0.0, σ = 0.5, λ = 0.9 and τ = 1.0 (red); and ν = −2.0, σ = 0.5,
λ = 0.9 and τ = 1.0 (blue). 143
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(a) An example of good mixing when ν = λ = τ = 0.0 and σ = 0.5.
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(b) An example of bad mixing when ν = λ = 0.0, σ = 0.5 and τ = 4.0.

Figure 7.7: Two examples demonstrating the effect of τ on mixing of the simulation
index, m. The Markov chain is plotted between iteration 17000 and 20000 in both
examples.

posterior samples. One such method is within-model sampling (WMS) which will

be discussed in Section 7.7. Here ‘model’ refers to the value of the simulation index

m.

A property common to the BC, HBC and PHBC models is that given simulation

index, m, and observed data, z, the likelihood parameters relating to positives and

negatives are independent,

p(µα, µβ, εα, εβ|m, z) = p(µα, εα|m, z)p(µβ, εβ|m, z).

These parameters are not independent in the marginal posterior because of the

sum over the simulations

p(µα, µβ, εα, εβ|z) =

M∑

m=1

p(µα, εα|m, z)p(µβ, εβ|m, z)p(m|z).

For example consider the distribution of the parameters relating to positives
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given simulation, m, and observed data, z,

p(µα, εα|m, z) ∝
n∏

i=1

(
exp

((
zi+1

2

)
(µα + εα,i)

)

1 + exp(µα + εα,i)

) y
(m)
i

+1

2

p(µα)p(εα).

This distribution depends on {(y(m)
i , zi)|y(m)

i = 1, i = 1, . . . , n} and is independent

of {(y(m)
i , zi)|y(m)

i = −1, i = 1, . . . , n}. In particular if y
(m)
i = −1 ∀i ∈ {1, . . . , n}

then p(µα, εα|m, z) = p(µα)p(εα). The marginal posterior p(µα, εα|z) only de-

pends on {(y(m)
i , zi)|y(m)

i = −1, i = 1, . . . , n} through p(m|z).

In the HBC and PHBC model equations true-positives are explicitly linked to

false-positives and true-negatives are explicitly linked to false-negatives. However,

there are no such links between true-positives and false-negatives and between

true-negatives and false-positives. Consider a region in which all pixels are all

false-negatives in all simulations of the calibration event. Now suppose in all

simulations of the event we want to predict these pixels are positive, then our

calibrated prediction in this region will be uncertain because it does not take

account of any link between false-negatives and true-positives. In Chapter 8 we

consider a likelihood model where these links are made.

7.6 Buscot Example

In this section we use the Buscot dataset introduced in Section 2.4 to illustrate

our Bayesian framework for calibration and calibrated prediction using the HBC

model. The results can be compared to those obtained using GLUE (Section 4.2.3)

and the BC model (Section 5.3).

In Section 7.5 we demonstrated the impact of different hyperparameter settings

on posterior inference using a one-dimensional example. Therefore in this section

we present only two examples indicative of the results possible using the HBC

model.

Figures 7.8 and 7.9 show the results of calibration and calibrated prediction

using the HBC model with hyperparameters ν = 0.0, σ = 0.014, τ = 1.0 and two

λ values: 0.0 and 0.9. Priors µα, µβ ∼ N (0.0, 0.0142) in the (µα, µβ) BC model
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correspond to priors α, β ∼ beta(10000, 10000) in the (α, β) BC model, for which

the results of calibration and calibration prediction are shown in Figure 5.6.

Increasing λ from 0.0 to 0.9 increases the prior probability that αi and βi take

values away from 0.5 (see Figures 7.8(a) and 7.8(b)). This leads to less uncertainty

in the calibrated predictions (see Figures 7.9(e) and 7.9(f)). Also, increasing λ

increases spatial dependence (see Figures 7.8(c) and 7.8(d)).

The marginal posterior for the simulation indexm (see Figures 7.8(e) and 7.8(f)),

and the posterior for the calibration inputs θ (see Figures 7.9(a) and 7.9(b)),

become more peaked when λ changes from 0.0 to 0.9. This is because each term in

εα and εβ must take a similar value to its neighbours – the capacity for adjusting

to each pixel has been reduced so falses are inevitably penalised more. Note that

if each term in εα and εβ was required to be identical to its neighbours, the HBC

model would degenerate to the BC model.

A peculiar property of the HBC model can be observed in Figures 7.9(c) and

7.9(d). Each image splits roughly into three parts: p(z′i = 1|y′i = 1, z) ≈ 0.5 in

regions dominated by negatives; p(z′i = 1|y′i = 1, z) > 0.5 in regions dominated

by true-positives; and p(z′i = 1|y′i = 1, z) < 0.5 in regions dominated by false-

positives. Regions dominated by false-positives occur just outside the observed

flood boundary and appear as lighter patches in Figures 7.9(c) and 7.9(d). If these

regions are positive in simulations of the event we want to predict, our calibrated

prediction will be that the true value is likely to be negative. However, the event we

wish to predict is usually greater in magnitude than the event we have calibrated

on, so this property of the model is undesirable. This problem is a consequence of

overfitting the model to the calibration data.

In summary, the results of calibration and calibrated prediction using the HBC

model are a great improvement on those obtained using the BC model in Sec-

tion 5.3. Fundamentally, it is possible to obtain good results for calibration and

calibrated prediction simultaneously. The results may be further improved by in-

creasing τ but in this case Markov chain convergence is poor. In the next section

we discuss a method for sampling from the posterior distribution when mixing is
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poor.

7.7 Within-Model Sampling

In Section 7.5.4 we discussed the problem of Markov chain convergence for the

HBC and PHBC models. We now consider one method for generating posterior

samples when mixing is poor.

For the MCMC algorithm outlined in Section 7.3 the aim is to simulate from

the joint posterior p(φ, m|z). This is called across-model sampling (AMS), where

‘model’ refers to the value of the simulation index m. When mixing between

‘models’ is poor we can simulate from p(φ|m, z) for each m and find p(m|z)

leading to p(φ, m|z), this is called within-model sampling (WMS).

The marginal posterior p(m|z) can be found from the ratio

p(m|z)

p(m⋆|z)
=

p(z|m)p(m)

p(z|m⋆)p(m⋆)

where m⋆ is some reference simulation index, and p(m) = p(m⋆) so we need only

calculate

p(z|m) =

∫
p(z|φ, m)p(φ|m) dφ

called the marginal likelihood.

There are a number of ways to approximate the marginal likelihood (see Green,

2003, for a review), we adopt a method based on the identity

p(z|m) =

(∫
p(φ|m, z)

p(z|φ, m)
dφ

)−1

.

If {φ(k) : k = 1, . . . , K} is a sample from p(φ|m, z), then

p(z|m) ≈
(

1

K

K∑

k=1

1

p(z|φ(k), m)

)−1

. (7.11)

As we need a sample from p(φ|m, z) for each m ∈ {1, 2, . . . ,M}, and we must

remove burn-in from each sample, WMS is more computationally intensive than

AMS. In our case φ = (µα, µβ, εα, εβ) and for each sample {φ(k) : k = 1, . . . , K}
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tiles (dashed lines).
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Figure 7.8: Two examples using the HBC model and changing λ. The hyperpara-
meters are ν = 0.0, σ = 0.014 and τ = 1.0 in both cases; and λ is 0.0 (black) and
0.9 (red).
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Figure 7.9: Results of calibration and calibrated prediction for the Buscot dataset
using the HBC model with hyperparameters ν = 0.0, σ = 0.014 and τ = 1.0.
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we must calculate

p(z|φ(k), m) =
n∏

i=1

(
exp

((
zi+1

2

)
(µα + εα,i)

)

1 + exp(µα + εα,i)

) yi+1

2

×
(

exp
((

1−zi
2

)
(µβ + εβ,i)

)

1 + exp(µβ + εβ,i)

) 1−yi
2

for k = 1, . . . , K.

We now consider an example for the (µα, µβ) BC model with ν = 0.0 and σ =

0.0045. This corresponds to the (α, β) BC model with a = b = c = d = 100000,

for which p(m|z) can be found exactly (see Section 5.2). We select a subset of

simulations m ∈ {110, 91, 349, 1, 3, 5, 9, 35, 46, 51} that are representative of the

total 500 simulations to reduce computational burden. The results of the analysis

are shown in Figure 7.10. The WMS approximation is very poor. We test whether

this was the consequence of a few extreme values by removing the 10 largest and

10 smallest p(z|φ(k), m) for each m but these results are also very poor. However,

the estimator in Equation (7.11) is known to have high variance and be sensitive

to very few points in the sample because p(z|φ(k), m) is generally very small (see

Green, 2003). We will discuss other methods for improving mixing in Section 8.6.

In this chapter we extended the BC model to account for heterogeneity and

spatial dependence, and used this extension as the likelihood in our framework for

calibration and calibrated prediction. We demonstrated the impact of different

prior assumptions on the posterior and identified that mixing is poor for some

prior choices. A more fundamental problem with the HBC model is that there

are no explicit links between true-positives and false-negatives and between true-

negatives and false-positives. In the next chapter we consider a model in which

they are linked and we discuss other methods for improving mixing of the Markov

chain.
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Figure 7.10: Results of within-model sampling for the (µα, µβ) BC model with
ν = 0.0 and σ = 0.0045. The exact results using the (α, β) BC model with
a = b = c = d = 100000 are shown by black circles. The WMS approximation
using the full sample is shown with red circles, and with the 10 largest and 10
smallest values removed with blue circles.
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Chapter 8

The Hidden Conditional
Autoregressive Model

In Chapter 7 we used the HBC model for the likelihood of the observed flood

extent given a simulation of flood extent, but unfortunately this model does not

explicitly link positive and negative simulation values. In this chapter we consider

the hidden conditional autoregressive (HCAR) model for the likelihood, which

does link positive and negative simulation values. We describe calibration and

calibrated prediction using the HCAR model and present an MCMC algorithm for

estimation. Examples are given using the Buscot dataset, and we describe various

methods to improve mixing in the MCMC algorithm. Three variants of the HCAR

model are presented: the hidden intrinsic autoregressive (HIAR) model which is

motivated as a limit of the HCAR model; the heterogeneous HCAR model which

represents heterogeneity; and the continuous HCAR model which uses continuous

valued simulations.

8.1 Introduction

In Chapter 5 we presented our Bayesian framework for calibration and calibrated

prediction, and identified that we need to specify an appropriate likelihood model

for the observed flood extent given a simulation of flood extent. Subsequently, this

specification has formed the main task in this thesis. In Chapter 6 we considered

the Ising model which included spatial dependence but was impractical because of

the intractable normalising constant. In Chapter 7 we considered the HBC model,
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but this model does not explicitly link positive and negative simulation values. For

example, fix µα = µβ = 0.0 and λα = λβ = 0.0 and suppose we have one simulation

for calibration, y, and one for prediction, y′. For pixel i, suppose in calibration the

simulation value is negative, yi = −1, and the observed value is positive, zi = 1,

i.e. a false-negative. Then, if in prediction the simulation value is positive, y′i = 1,

our calibrated prediction is completely uncertain, p(z′i = 1|z) = 0.5.

In Weir and Pettitt (1999) spatially distributed binary data is treated as the

result of thresholding an underlying continuous process, which in turn is modelled

as a conditional autoregression (CAR) (see Besag, 1974). Any properties of the

binary image, such as blur, spatial dependence and heterogeneity, are represented

in the distribution of the underlying continuous process. The advantage of this

approach over the Ising model is that there is no need to calculate a complicated

normalising constant. In the next section we extend this model to regression on

a binary image and parameterise the model so positive and negative simulation

values are explicitly linked.

8.2 The Hidden Conditional Autoregressive

Model

In this section we extend the approach adopted in Weir and Pettitt (1999) and

Pettitt et al. (2002) to regression on another image. The observed data z and the

simulator output y(m) are binary arrays of size n = r × c, each taking values in

{−1, 1}n, where −1 indicates a dry pixel and 1 a wet pixel. The hidden continuous

process is denoted by ζ ∈ R
n, and

zi = 1{−1,1}[ζi > 0]

for i = 1, . . . , n, where

1{−1,1}[ζi > 0]





1 if ζi > 0

−1 if ζ ≤ 0,

so p(zi = 1) = p(ζi > 0) and p(zi = −1) = p(ζi ≤ 0).
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8.2.1 Conditional Autoregression (CAR)

We model the underlying continuous process ζ as a conditional autoregression

(CAR). CARs provide a means of specifying a Gaussian Markov random field

(GMRF) in terms of full conditionals, and are discussed in Besag (1974). For

completeness we show how a unique joint distribution can be defined by specifying

the full conditionals only, and work out what constraints must be imposed for this

to be true (see Rue and Held, 2005). Let x ∈ R
n and suppose

xi|x−i ∼ N
(
µi +

n∑

j=1

Cij(xj − µj), σ
2
i

)

for i = 1, . . . , n, and some µ, σ and {Cij : i, j = 1, . . . , n}. Pixels i and j are

neighbours if and only if Cij 6= 0. Brook’s lemma states that

p(x)

p(x′)
=

n∏

i=1

p(xi|x1, . . . , xi−1, x
′
i+1, . . . , x

′
n)

p(x′i|x1, . . . , xi−1, x′i+1, . . . , x
′
n)

(8.1)

provided p(x) > 0 and p(x′) > 0, and this must be invariant to permutations

because the labelling is not ordered, so for instance

p(x)

p(x′)
=

n∏

i=1

p(xi|x′1, . . . , x′i−1, xi+1, . . . , xn)

p(x′i|x′1, . . . , x′i−1, xi+1, . . . , xn)
. (8.2)

This can be proved by starting with the trivial result

p(x1, . . . , xn) =
p(xn|x1, . . . , xn−1)

p(x′n|x1, . . . , xn−1)
p(x1, . . . , xn−1, x

′
n)

then replacing p(x1, . . . , xn−1, x
′
n) by a similar expression and continuing the it-

eration. This gives Equation (8.1) and the invariance to permutations is obvious

from this proof. Equation (8.2) can be found the same way by starting with x′1

instead of x′n.

Take x′ = 0 and µ = 0 then from Equation (8.1)

log
p(x)

p(0)
= −1

2

n∑

i=1

(
xi

σi

)2

+
n∑

i=2

i−1∑

j=1

Cijxixj

σ2
i

(8.3)

and from Equation (8.2)

log
p(x)

p(0)
= −1

2

n∑

i=1

(
xi

σi

)2

+
n−1∑

i=1

n∑

j=i+1

Cijxixj

σ2
i

. (8.4)
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Equating the right-hand sides of Equations (8.3) and (8.4) we find

Cij

σ2
i

=
Cji

σ2
j

for i 6= j. If this condition is met then the (log) joint density is

log p(x) = A− 1

2

n∑

i=1

(
xi

σi

)2

+
1

2

∑

i6=j

Cijxixj

σ2
i

where A ∈ R is some constant. Therefore x ∼ MVN (0,Q−1) provided the

precision matrix is positive definite, Q > 0, where Qii = 1/σ2
i and Qij = −Cij/σ

2
i

for i 6= j. Besag and Kooperberg (1995) prove a sufficient condition for this to be

true is that all Cij are nonnegative and that Ci+ ≤ 1 for all i with strict inequality

for at least one i.

Specifying the model in terms of the precision matrix is particularly convenient

because Qij 6= 0 if and only if i and j are neighbours. The variance matrix

V = Q−1 will in general have the property that Vij is a function of all Q.

Throughout this chapter we will specify models through full conditionals for

their intuitive appeal. In all cases we have checked that the model satisfies the

conditions outlined in this section.

8.2.2 Likelihood

For the underlying continuous process ζ we define the conditional expectation and

variance to be

E (ζi|ζ−i,y, µ, ρ,D,C) = µ+ ρ (Dy)i +

n∑

j=1

Cij

(
ζj − µ− ρ (Dy)j

)

and

Var (ζi|ζ−i,y, µ, ρ,D,C) = 1.0

where µ ∈ R is the mean parameter, ρ ∈ R the regression parameter, D is the

blur matrix, and C is the spatial interactions matrix. The precision matrix is

Q = I − C.

We assume toroidal boundary conditions, so the East/South neighbours of pixels
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in the last column/row are pixels in the first column/row. This facilitates specifi-

cation of D and C because we do not need a different treatment for Cij and Dij

near the boundary.

We define two binary relations on the set of pixel sites, denoted by
ew∼ and

ns∼.

Both relations are required to be symmetric, if i
ew∼ j we say i and j are East–West

neighbours, and if i
ns∼ j we say i and j are North–South neighbours. We define

the blur matrix as

Dij =





c if i
ns∼ j

d if i
ew∼ j

1 − 2c− 2d if i = j

0.0 otherwise,

(8.5)

where c, d ≥ 0.0 and c + d ≤ 0.5, so (Dy)ij ∈ [−1, 1]. We define the spatial

interactions matrix as

Cij =





a if i
ns∼ j

b if i
ew∼ j

0.0 otherwise,

(8.6)

where |a|+ |b| < 0.5 because of the positive definiteness constraint on the precision

matrix Q > 0, (Q1 = 0 if |a| + |b| = 0.5). As a consequence of assuming toroidal

boundary conditions Q is a block-circulant matrix. In Section 8.3 we discuss

block-circulant matrices in more detail and show that they can be linked to the two-

dimensional discrete Fourier transform. The consequence of this is that eigenvalues

and eigenvectors can be found easily, determinants are therefore straightforward

and matrix inversion is also relatively simple.

From Equations (8.5) and (8.6) we can see that the matrices D and C are

determined by the parameters c and d, and a and b respectively. We write p(D) =

p(c, d) and p(C) = p(a, b). The vector of likelihood model parameters is φ =

(µ, ρ, a, b, c, d). Provided |a|+ |b| < 0.5, the likelihood of the underlying continuous

process given a simulation is

ζ|y,φ ∼ MVN
(
µ1 + ρDy, (I − C)−1

)
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m

µ ρ a, b c, dy y′

ζ ζ ′

z z′

Figure 8.1: DAG for Bayesian calibration of flood inundation simulators condi-
tioned on an observation of flood extent using the HCAR model.

which has density

p(ζ|y,φ) = (2π)−
n
2 |I − C|1/2 exp

(
−1

2
vT(I − C)v

)
(8.7)

where

v = ζ − µ1 − ρDy.

There is no loss of generality in setting the conditional variance to 1.0, to il-

lustrate this we consider the probit model. Let x ∈ {−1, 1} and ξ ∈ R, suppose

x = 1{−1,1}[ξ > 0] and ξ ∼ N (µ, σ2), then

p(x = −1) = p(ξ ≤ 0) = Φ
(
−µ
σ

)
= Φ

(
−cµ
cσ

)
= p(ξ′ ≤ 0)

where c ∈ R is a constant and ξ′ ∼ N (cµ, c2σ2). So multiplying the mean by c is

equivalent to dividing the variance by c2, making one of the parameters redundant,

we set σ2 = 1.0.
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8.2.3 Prior Distributions

The DAG in Figure 5.2 for Bayesian calibration of flood inundation simulators

must be augmented to include nodes for ζ and ζ ′. Figure 8.1 shows the revised

DAG. We now define the conditional (or marginal) distributions for each node of

the DAG to complete the joint distribution specification.

The prior for m is discrete uniform on {1, 2, . . . ,M}. Given m, y and y′ are

deterministic, being y(m) and y′(m) respectively, see Equations (5.3) and (5.4).

For the mean and regression parameters we assume Normal priors, µ ∼
N (νµ, σ

2
µ) and ρ ∼ N (νρ, σ

2
ρ), where νµ, νρ ∈ R and σµ, σρ ∈ R>0.

For the blur matrix parameters c and d we assume a Uniform distribution over

the feasible parameter space c ≥ 0, d ≥ 0 and c+ d ≤ 0.5, p(c, d) ∝ 1[c ≥ 0]1[d ≥
0]1[c+ d ≤ 0.5].

Although we could take a simple prior for a and b that is uniform over the

feasible parameter space |a| + |b| < 0.5, we shall see when we come to Section 8.7

that it could be beneficial to prevent the parameters a and b getting too close to

the |a| + |b| = 0.5 boundary. Let

φ1 = a− b+ 0.5 and

φ2 = a + b+ 0.5

then |a| + |b| < 0.5 corresponds to 0.0 < φ1, φ2 < 1.0. Suppose φi ∼ beta(si, ti)

where si > 0 and ti > 0 for i = 1, 2, and that φ1 and φ2 are independent. Then

the joint distribution of a and b is

p(a, b) =
2

B(s1, t1)B(s2, t2)
(0.5 + a− b)s1−1(0.5 − a+ b)t1−1

(0.5 + a+ b)s2−1(0.5 − a− b)t2−1

where B(si, ti) = Γ(si)Γ(ti)/Γ(si + ti) is the beta function. Let A, B, C and

D denote the points (0.5, 0), (0, 0.5), (−0.5, 0) and (0,−0.5) respectively. Then

(0.5−a−b), (0.5+a−b), (0.5+a+b) and (0.5−a+b) are
√

2 times the minimum

distances from (a, b) to the lines AB, BC, CD and DA respectively. Therefore

the density is proportional to the product of the distances to the boundary lines
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taken to different powers.

8.2.4 Posterior, Calibration and Calibrated Prediction

The event we wish to predict is linked to the event we are calibrating on by taking

ζ ′|y′,φ ∼ MVN (µ1 + ρDy′, (I − C)−1)

and z′i = 1{−1,1}[ζ
′
i > 0] for i = 1, . . . , n. Then the posterior distribution is

p(ζ,φ, m|z) ∝
∑

y

p(z|ζ)p(ζ|y,φ)p(y|m)p(m)p(φ)

= p(z|ζ)p(ζ|y(m),φ)p(m)p(µ)p(ρ)p(a, b)p(c, d)

∝
(

n∏

i=1

1[zi = 1{−1,1}[ζi > 0]]

)
1[c ≥ 0]1[d ≥ 0]1[c+ d ≤ 0.5]

× exp

(
−1

2

(
ζ − µ1 − ρDy(m)

)T
(I − C)

(
ζ − µ1 − ρDy(m)

)

− 1

2σ2
µ

(µ− νµ)2 − 1

2σ2
ρ

(ρ− νρ)
2

)

× 2

B(s1, t1)B(s2, t2)
(0.5 + a− b)s1−1(0.5 − a + b)t1−1

× (0.5 + a+ b)s2−1(0.5 − a− b)t2−1. (8.8)

It is not possible to evaluate the posterior density directly because we do not

know the normalising constant. Instead we generate a sample {ζ(k),φ(k), m(k)|k =

1, . . . , K} using the MCMC algorithm described in Section 8.4.

To find an estimate of the marginal posterior for the simulation index, p(m|z),

simply disregard the other parameter values then {m(k)|k = 1, . . . , K} is a sample

from this distribution.

We can use the posterior distribution p(m,φ|z), obtained by calibration on an

observation z, to make probabilistic predictions of a future event z′. This is called
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a calibrated prediction, and is computed as follows

p(z′i = 1|z) = p(ζ ′i > 0|z)

=
M∑

m=1

∫
p(ζ ′i > 0|φ, m)p(m,φ|z) dφ

≈ 1

K

K∑

k=1

p(ζ ′i > 0|φ(k), m(k)) (8.9)

where {φ(k), m(k)|k = 1, . . . , K} is a sample from the posterior p(φ, m|z), and

ζ ′i|φ(k), m(k) is normal with

E
(
ζ ′i|φ(k), m(k)

)
= µ(k) + ρ(k)(D(k)y′(m(k)))i

and variance given by the ith diagonal of (I − C(k))−1, which can be calculated

easily because Q = I − C is block-circulant (see Section 8.3).

8.2.5 The HCAR Model as an Extension of the BC Model

If we assume independence C = 0 and no blur D = I, then ζi
iid∼ N (µ+ ρyi, 1.0)

and the HCAR model is exactly a binary channel (BC) model (see Chapter 5)

where

α = p(zi = 1|yi = 1) = p(ζi > 0|yi = 1) = Φ(µ+ ρ) and

β = p(zi = −1|yi = −1) = p(ζi ≤ 0|yi = −1) = Φ(ρ− µ).

The parameters α and β are more tangible than µ and ρ, and the BC model using

these parameters was examined in Chapter 5. Therefore it is beneficial to examine

the density induced on (α, β) by the priors µ ∼ N (νµ, σ
2
µ) and ρ ∼ N (νρ, σ

2
ρ).

Using the change of variables formula (see for example Grimmett and Stirzaker,

2002) we find

p(α, β) =

exp

(
− 1

2σ2
µ

(
Φ−1(α)−Φ−1(β)

2
− νµ

)2

− 1
2σ2
ρ

(
Φ−1(α)+Φ−1(β)

2
− νρ

)2
)

4πσµσρφ(Φ−1(α))φ(Φ−1(β))
.

Figures 8.2(a) and 8.2(b) illustrate the effect of σ = σµ = σρ when νµ = νρ = 0.0.

A diffuse prior on µ and ρ does not equate to a diffuse prior on α and β. When

σµ = σρ = 0.5, p(α, β) = 1.0.
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(a) νµ = νρ = 0, σµ = σρ = 0.3.
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(b) νµ = νρ = 0, σµ = σρ = 0.8.
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(c) σµ = σρ = 0.3: (black) νµ =
0.7, νρ = 0; (red) νµ = −0.9, νρ =
0; (blue) νµ = 0, νρ = 0.7; (green)
νµ = 0, νρ = −0.2.
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(d) νµ = νρ = 0: (black) σµ =
0.5, σρ = 0.3; (red) σµ = 0.3, σρ =
0.9.

Figure 8.2: The density for the binary channel (BC) model parameters α = p(zi =
1|yi = 1) and β = p(zi = −1|yi = −1), corresponding to the HCAR model when
C = 0 and D = I for various priors on µ and ρ.

Figure 8.2(c) shows the effect of νµ and νρ when σµ = σρ = 0.3. Bias towards

positives or negatives can be controlled with νµ; increasing νµ increases p(zi =

1|yi = 1) and p(zi = 1|yi = −1). The dependence on yi is controlled by ρ;

increasing ρ increases p(zi = 1|yi = 1) and p(zi = −1|yi = −1).

Figure 8.2(d) shows the effect of having different standard deviations. If σµ > σρ

then α and β are negatively correlated, whereas if σµ < σρ then α and β are

positively correlated. In the former case we are expressing that we are more

certain about the dependence on yi than the bias, for the latter the opposite is

true.
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8.3 Block-Circulant Matrices

The details of this discussion are taken from Rue and Held (2005) which is an

excellent monograph on Gaussian Markov random fields. However, the results

date back to Moran (1973). We discuss circulant matrices first and then block-

circulant matrices.

A matrix G is circulant if and only if it can be written

G =




g0 g1 g2 . . . gn−1

gn−1 g0 g1 . . . gn−2

gn−2 gn−1 g0 . . . gn−3

...
...

...
...

g1 g2 g3 . . . g0




= (gj−i mod n),

where g = (g0, g1, . . . , gn−1) is called the base of G. The eigenvalues λ and (unit)

eigenvectors v satisfy Gv = λv which defines a set of n linear difference equations

with constant coefficients. Solving these we find

λj =
n−1∑

i=0

gi exp

(
−2πιij

n

)
and (8.10)

vj =
1√
n

(
1, exp

(
−2πιj

n

)
, . . . , exp

(
−2πιj(n− 1)

n

))T

(8.11)

for j = 0, . . . , n − 1 where ι =
√
−1 and the 1/

√
n ensures that vTv = 1. Let

V = (v0|v1| . . . |vn−1) be the eigenvector matrix (which is independent of g) this is

the discrete Fourier transform matrix. Let Λ = diag(λ0, λ1, . . . , λn−1) then, from

Equations (8.10) and (8.11),

Λ =
√
n diag(V g) (8.12)

and G = V ΛV H where V H = V −1 is the conjugate transpose of V (swap rows

and columns and negate the imaginary part).

The discrete Fourier transform is

DFT(s) = V s =
1√
n




∑n−1
j=0 sj

∑n−1
j=0 sj exp

(
−2πιj

n

)

...
∑n−1

j=0 sj exp
(
−2πιj(n−1)

n

)
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and the inverse discrete Fourier transform is

IDFT(s) = V Hs =
1√
n




∑n−1
j=0 sj

∑n−1
j=0 sj exp

(
2πιj

n

)

...
∑n−1

j=0 sj exp
(

2πιj(n−1)
n

)



.

The inverse G−1 = V Λ−1V H is also circulant so Λ−1 =
√
n diag(V h) where h is

the base of G−1. Furthermore from Equation (8.12), (Λ)−1 = (
√
n diag(V g))−1 so

h =
1

n
V H(V g)−1

=
1

n
IDFT(DFT(g) ? (−1))

where ? denotes elementwise power.

A matrix G is block-circulant if and only if it can be written

G =




G0 G1 G2 . . . GN−1

GN−1 G0 G1 . . . GN−2

GN−2 GN−1 G0 . . . GN−3

...
...

...
...

G1 G2 G3 . . . G0




= (Gj−i mod N),

where for each i the n × n matrix Gi is circulant with base gi. The base of G is

the n×N matrix g = (g0|g1| . . . |gN−1).

Because Gi is circulant, Gi = VnΛiV
H

n where Λi =
√
n diag(Vngi), and there-

fore

G =




Vn

. . .

Vn







Λ0 . . . ΛN−1

...
...

Λ1 . . . Λ0







V H
n

. . .

V H
n




.
= V N

n Λ(V N
n )H.

We want to diagonalize G to find the eigenvalues and eigenvectors, but Λ is not

diagonal. However, we can permute Λ to make it block-diagonal with circulant

blocks and then break this down using eigenvalues and eigenvectors. So we con-

struct a permutation matrix P that takes the ith row of block row j to the jth
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row of block row i, with PP = I. Then

PΛP =




D0

D1

. . .

Dn−1




.
= D

where Di is a circulant matrix with base di (the jth element of di is the ith

diagonal of Λj). Di is circulant so Di = VNΓiV
H

N where Γi =
√
Ndiag(VNdi),

now

G = V N
n Λ(V N

n )H

= V N
n PDP (V N

n )H

= (V N
n PV n

N )Γ((V n
N )HP (V N

n )H)

where Γ = diag(Γ0, . . . ,Γn−1) so Γ is diagonal and we have found our eigenvalues

and eigenvectors.

V N
n PV n

N is the two-dimensional discrete Fourier transform matrix. Suppose the

eigenvalues are stored in a n × N matrix Ψ so row i is the diagonal of Γi. The

two-dimensional discrete Fourier transform has elements

(DFT2(s))ij =
1√
nN

n−1∑

i′=0

N−1∑

j′=0

si′j′ exp

(
−2πι(

ii′

n
+
jj′

N
)

)

for i = 0, . . . , n− 1 and j = 0, . . . , N − 1, and the inverse has elements

(IDFT2(s))ij =
1√
nN

n−1∑

i′=0

N−1∑

j′=0

si′j′ exp

(
2πι(

ii′

n
+
jj′

N
)

)
.

Then

Ψ =
√
nNDFT2(g)

contains all the eigenvalues of G. The base h of G−1 is

h =
1

nN
IDFT2 (DFT2(g) ? (−1)) .

To sample from x ∼ MVN (0,Q−1) where Q = V ΛV T is block-circulant,

simply note that x = V Λ− 1
2 z where zi

iid∼ N (0, 1) for i = 1, . . . , n. Create a sample
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from z then this translation can be done efficiently using the two-dimensional

discrete Fourier transform to obtain a sample from the distribution for x,

x = Re

(
DFT2(((

√
nNDFT2(g)) ? (−1

2
)) ⊙ z)

)

where ⊙ denotes elementwise multiplication.

For our model we need the eigenvalues to calculate the determinant and the

diagonal entries of the covariance matrix (I − C)−1. The form of the precision

matrix Q = I − C is

I − C =




A B 0 . . . 0 B

B A B 0 0

0 B A 0 0
...

B 0 0 B A




where

A =




1 −a 0 −a
−a 1 −a 0

−a 0 −a 1




is a r × r circulant matrix with base a = (1,−a, 0, . . . ,−a),

B =




−b 0 0 0

0 −b 0 0

0 0 0 −b




is a r× r circulant matrix with base b = (−b, 0, . . . , 0), and 0 a r× r matrix with

only 0 entries. The base for Q = I − C is the r × c matrix

q =




1 −b 0 0 −b
−a 0 0 0 0

0 0 0 0 0

−a 0 0 0 0




.
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The eigenvalues are

Ψij =

r−1∑

i′=0

c−1∑

j′=0

qi′j′ exp

(
−2πι(

ii′

r
+
jj′

c
)

)

= 1 − 2a cos(
2πi

r
) − 2b cos(

2πj

c
)

for i = 0, 1, . . . , r − 1 and j = 0, 1, . . . , c− 1.

All the diagonal elements are equal in the inverse so we only need to calculate

h00,

h00 =
1

rc
(IDFT2(DFT2(q) ? (−1)))00

=
1√
rc

(IDFT2(Ψ ? (−1)))00

=
1

rc

r−1∑

i′=0

c−1∑

j′=0

(1 − 2a cos(
2πi′

r
) − 2b cos(

2πj′

c
))−1,

which is the mean of the inverse eigenvalues.

8.4 MCMC Algorithm

In this section we describe an MCMC algorithm for sampling from the poste-

rior in Equation (8.8). Weir and Pettitt (1999) propose an algorithm which uses

Metropolis-Hastings updates for each parameter, but we will show that for µ, ρ

and ζi for i = 1, . . . , n we can use Gibbs updates.

8.4.1 µ Update

Assuming p(ζ, ρ, a, b, c, d,m, z) > 0.0, the full conditional for µ is

p(µ|ζ, ρ, a, b, c, d,m, z) ∝ p(ζ|µ, ρ, a, b, c, d,m)p(µ)

∝ exp

(
−1

2
(ζ − µ1 − ρDy(m))T(I − C)(ζ − µ1 − ρDy(m)) − 1

2σ2
µ

(µ− νµ)2

)
.

By completing the square for µ we find

µ|ζ, ρ, a, b, c, d,m, z ∼ N
(
σ2

µ1
T(I − C)ζ − ρσ2

µ1
T(I − C)Dy(m) + νµ

σ2
µ1

T(I − C)1 + 1
,

σ2
µ

σ2
µ1

T(I − C)1 + 1

)
.
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The Gibbs update consists of taking the new value of µ from this full conditional

distribution.

8.4.2 ρ Update

Following the method used for µ, provided p(ζ, µ, a, b, c, d,m, z) > 0.0, the full

conditional for ρ is

ρ|ζ, µ, a, b, c, d,m, z ∼ N
(
σ2

ρ

(
Dy(m)

)T
(I − C)ζ − µσ2

ρ

(
Dy(m)

)T
(I − C)1 + νρ

σ2
ρ (Dy(m))

T
(I − C)Dy(m) + 1

,

σ2
ρ

σ2
ρ (Dy(m))

T
(I − C)Dy(m) + 1

)
.

The Gibbs update consists of taking the new value of ρ from this full conditional

distribution.

8.4.3 m Update

Propose a new value m′ from q(m′|m), then the proposal ratio is q(m|m′)/q(m′|m),

and if p(ζ,φ, z) > 0.0 the posterior ratio is

p(ζ|φ, m′)

p(ζ|φ, m)
.

The acceptance probability for m′ is the minimum of 1.0 and the product of the

posterior ratio and proposal ratio. Suitable proposal distributions are discussed in

Section 7.3.1 and the Robin Hood method for sampling from a discrete distribution

is outlined in Section 7.3.2.

8.4.4 (a, b) Update

Following Weir and Pettitt (1999) we could adopt a proposal that is uniform on

a square of given side, centred on the current value, with sides parallel to the

parameter region boundaries, and conditional on lying within the feasible parame-

ter space. However, for many prior specifications the posterior density for (a, b)

is concentrated in a small region of the parameter space close to the boundary

|a|+ |b| = 0.5. In this case proposals that take (a, b) away from the boundary are
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generally rejected. We found mixing of the MCMC algorithm was improved by

using two perpendicular one-dimensional updates.

Let φ1 = a + b and φ2 = a− b, then −0.5 < φ1, φ2 < 0.5 and we will update φ1

and φ2 independently. Propose a new value φ′
1 from U(max(φ1−f,−0.5),min(φ1+

f, 0.5)), then calculate a′ = (φ′
1 + φ2)/2 and b′ = (φ′

1 − φ2)/2. The length of a

proposal centred at φ1 = a + b is

L(a, b) = min(a + b+ f, 0.5) − max(a+ b− f,−0.5).

Then, assuming p(ζ, µ, ρ, c, d,m, z) > 0.0, the acceptance probability is the mini-

mum of 1.0 and

p(ζ|µ, ρ, a′, b′, c, d,m)p(a′, b′)

p(ζ|µ, ρ, a, b, c, d,m)p(a, b)

L(a, b)

L(a′, b′)
.

8.4.5 (c, d) Update

We take as our proposal density, q(c′, d′|c, d), a Uniform distribution on a square

centred on the current value, with sides parallel to the parameter axes, and con-

strained to lie within the feasible parameter space (see Figure 8.3). Let A(c, d)

be the area of the proposal region when the proposal is centred at (c, d) then,

assuming that p(ζ, µ, ρ, a, b,m, z) > 0.0 and p(c, d) > 0.0, the acceptance ratio is

the minimum of 1.0 and

p(ζ|µ, ρ,D′,y,C)

p(ζ|µ, ρ,D,y,C)

A(c, d)

A(c′, d′)
.

8.4.6 ζi Update

In Weir and Pettitt (1999) the same Metropolis-Hastings update is used for all ζi.

However, for some ζi mixing may be poor for one proposal distribution whilst for

others mixing may be poor for another. This problem does not occur if we use
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Figure 8.3: Possible proposal regions using a Uniform distribution on a square
centred on the current value, with sides parallel to the parameter axes, and con-
strained to lie within the feasible parameter space.

Gibbs updates for each ζi. Assuming p(ζ−i,φ, m, z) > 0.0 we find

p(ζi|ζ−i,φ, m, z)

∝ p(z|ζi, ζ−i,φ, m)p(ζi|ζ−i,φ, m)

= p(zi|ζi)p(ζi|ζ−i,φ, m)

= 1[zi = 1{−1,1}[ζi > 0]]p(ζi|ζ−i,φ, m).

So the full conditional for ζi is a truncated Normal distribution which can be

sampled from using the following result.

Suppose X ∼ N (µ, σ2) and Y is X truncated to be > 0, we write

Y ∼ 1[Y > 0]N (µ, σ2). Then

pY (y) =





pX(y)/P (X > 0) if y > 0

0 if y ≤ 0.

We want to find the inverse of the cumulative distribution function so a sample

from Y can be obtained by taking a sample u ∼ U [0, 1]. The cdf for Y is

P (Y < y) =

∫ y

0

pY (y) dy

=

∫ y

0

pX(y)/P (X > 0) dy

=
1

P (X > 0)
(P (X < y) − P (X < 0)) .
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Finding y such that P (Y < y) = u is equivalent to solving

P (X < y) = uP (X > 0) + P (X < 0),

for y. Using X = σZ + µ where Z ∼ N (0, 1) we find

y = σΦ−1
(
u(1 − Φ

(
−µ
σ

)
) + Φ

(
−µ
σ

))
+ µ.

This is equivalent to taking u ∼ U [Φ(−µ/σ), 1] and applying the inverse cdf for

X, F−1
X (u).

The convergence of the MCMC algorithm would probably be improved by ob-

serving that ζ|z, µ, ρ,D, m,C is truncated multivariate Normal. However, sam-

pling efficiently from a truncated multivariate Normal distribution is a difficult

problem that, as yet, has no satisfactory solution (personal communication with

H̊avard Rue).

8.4.7 Initial Values

The initial values do not affect the stationary distribution of the Markov chain but

may affect the time to convergence. Weir and Pettitt (1999) found the initial values

of the mean parameters and ζ did influence the time to convergence, although the

spatial interaction parameters did not. Our algorithm differs from that of Weir

and Pettitt (1999) in that we have opted for Gibbs updates where possible, which

are less dependent on the initial value of the chain. However, we will adopt a

similar method for defining sensible initial values.

We choose to take an arbitrary simulation, m(0) = 1, and set the mean pa-

rameter µ(0) = 0.0 and the regression parameter ρ(0) = 1.0. We assume spatial

independence a(0) = b(0) = 0.0, and no blur c(0) = d(0) = 0.0.

In initialising ζ we must respect zi = 1{−1,1}[ζi > 0] for i = 1, . . . , n to avoid

division by zero in the posterior ratio. We take the mean of the full conditional

distribution

ζi|ζi,φ, m, z ∼ 1[zi = 1{−1,1}[ζi > 0]]N (y
(m(0))
i , 1)

as the initial value ζ
(0)
i for i = 1, . . . , n.
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It just remains to calculate the mean of a truncated Normal. Suppose X ∼
N (µ, σ2), and Y is X truncated ≤ 0, we write Y ∼ 1[Y ≤ 0]N (µ, σ2). Then

E (Y ) =

∫ ∞

−∞

ypY (y) dy

=

∫ 0

−∞

ypX(y)/P (X ≤ 0) dy

= − σ√
2πΦ(−µ/σ)

exp

(
− µ2

2σ2

)
+ µ.

Similarly, if Y is X truncated to > 0,

E (Y ) =
σ√

2πΦ(µ/σ)
exp

(
− µ2

2σ2

)
+ µ.

The parameters of the proposal distributions are determined by monitoring the

convergence of the Markov chain.

8.4.8 Computational Efficiency

The iterative nature of MCMC, together with the large number of parameters,

means the algorithm is very computer intensive. With this in mind we have tried

to make use of the sparsity of the matrices involved to make the updates more

efficient.

For example, in the Metropolis-Hastings updates the posterior ratio must be

calculated; a quadratic of the form vT(I − C)v, where v = ζ − µ1 − ρDy(m),

appears in the numerator and denominator. However, in each row of I −C there

are only five nonzero elements so to calculate the quadratic we only need to loop

over the rows and not the columns of the matrix. If the preceding update was also

Metropolis-Hastings then one of the quadratics would already be known, but if it

was Gibbs then both must be calculated.

8.5 Buscot Example

We return again to the Buscot dataset introduced in Section 2.4 so the results

may be compared to those obtained with GLUE in Section 4.2.3, the BC model

in Section 5.3 and the HBC model in Section 7.6.
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8.5.1 Realisations

In Figure 8.4 we present some realisations from the HCAR model using various

values of the parameters µ, ρ, a, b, c and d and taking the simulation with index

m = 110. For comparison y(110) is shown in Figure 8.4(a). The effect of the

precision matrix parameters, a and b, can be seen in Figure 8.4(c) where a =

0.49 and strong North-South dependence can be observed. Increasing ρ increases

the probability that zi = 1{−1,1}[ζi > 0] equals yi (compare Figures 8.4(b) and

8.4(d)). Increasing µ increases the probability that zi = 1 regardless of the value

of yi (compare Figures 8.4(b) and 8.4(e)). Finally, the effect of the blur matrix

parameters, c and d, is greatest at the boundary (see Figure 8.4(f)). Note that

the priors we adopt in practice will typically force µ and ρ to take values much

smaller than those investigated here, but for these values the realisations are both

obvious and uninteresting.

8.5.2 BC Model Examples

When we assume no blur, D = I, and spatial independence, C = 0, the HCAR

model is simply an alternative representation of the BC model (see Section 8.2.5).

Figure 8.2 illustrates the density induced on (α, β) by the priors µ ∼ N (νµ, σ
2
µ)

and ρ ∼ N (νρ, σ
2
ρ); together with the results using the BC model in Section 5.3,

and with regard to the realisations in Figure 8.4, we can summarise the properties

of the parameters µ and ρ as follows.

The mean parameter µ controls overall tendency toward 1 or −1. However,

adopting a prior that allows |µ| ≫ 0.0 is equivalent to allowing |α−0.5| ≫ 0.0 and

|β−0.5| ≫ 0.0 which leads to the posterior for the simulation index, p(m|z), being

negligible for most values of m, as seen in Figure 5.5. The regression parameter

ρ controls the dependence on y, for example ρ ≫ 0.0 implies we believe the

simulations to be very accurate. As with µ, adopting a prior that allows |ρ| ≫ 0.0

will result in p(m|z) being negligible for most m.
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(a) Simulation y(110).
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(b) µ = 0.0, ρ = 1.0, a = b = 0.0, c = d =
0.0.
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(c) µ = 0.0, ρ = 1.0, a = 0.49, b = 0.0, c =
d = 0.0.
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(d) µ = 0.0, ρ = 2.0, a = b = 0.2, c = d =
0.0.
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(e) µ = 1.0, ρ = 1.0, a = b = 0.1, c = d =
0.0.
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(f) µ = 0.0, ρ = 2.0, a = b = 0.1, c = d =
0.2.

Figure 8.4: Samples of z where zi = 1{−1,1}[ζi > 0] for i = 1, . . . , n and ζ ∼
MVN (µ1 + ρDy(110), (I − C)−1), where y(110) is shown in Figure 8.4(a).
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8.5.3 HCAR Model Examples

For comparison to the BC and HBC models, and for ease of interpretation, we

plot the densities induced on αi = p(zi = 1|(Dy)i = 1, µ, ρ, a, b) and βi = p(zi =

−1|(Dy)i = −1, µ, ρ, a, b) by the prior p(µ, ρ, a, b) in the examples which follow.

Similarly, we plot the densities induced on αi = p(z′i = 1|(Dy′)i = 1, µ, ρ, a, b) and

βi = p(z′i = −1|(Dy′)i = −1, µ, ρ, a, b) by the marginal posterior p(µ, ρ, a, b|z).

The means of these distributions are p(zi = 1|(Dy)i = 1), p(zi = −1|(Dy)i = −1),

p(z′i = 1|(Dy′)i = 1, z) and p(z′i = −1|(Dy′)i = −1, z) respectively.

In the first of our examples we look at the effect of spatial dependence. We set

νµ = νρ = 0.0 and σµ = σρ = 1/32, and consider three cases for spatial dependence:

spatially independent, s = 100.0 and s = 1.0, where s = s1 = t1 = s2 = t2. The

results of calibration and calibrated prediction for this example are summarised in

Figures 8.5 and 8.6.

The posterior for the simulation index, p(m|z), becomes flatter as s decreases,

leading to a flatter posterior for the calibration inputs, p(θ|z). The density induced

on αi = p(zi = 1|(Dy)i = 1, µ, ρ, a, b) and βi = p(zi = −1|(Dy)i = −1, µ, ρ, a, b)

by the prior of the likelihood parameters, p(µ, ρ, a, b), changes very little as s de-

creases. However, the density induced on αi = p(z′i = 1|(Dy′)i = 1, µ, ρ, a, b) and

βi = p(z′i = −1|(Dy′)i = −1, µ, ρ, a, b) by the posterior of the likelihood parame-

ters, p(µ, ρ, a, b|z), becomes focused around 0.5 as s decreases. Correspondingly

the calibrated predictions, p(z′i = 1|z), approach 0.5 as s decreases. In conclusion,

allowing spatial dependence improves calibration by making p(m|z) nonnegligible

for more m, but increases the uncertainty in our calibrated predictions, which is

undesirable.

The reason the calibrated prediction, p(zi = 1|z), approaches 0.5 as s decreases

is because the posterior for a+b becomes concentrated in a very small region close

to the boundary a + b = 0.5. Now 1 − 2a − 2b is an eigenvalue of the precision

matrix, Q = I − C, and the marginal variance of ζi|µ, ρ, a, b, c, d,y is the mean

of the inverse eigenvalues (see Section 8.3). Therefore as s decreases this marginal

variance becomes very large and p(z′i = 1|z) approaches 0.5.
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Note that because 1−2a−2b is an eigenvalue of the precision matrix, when a+b =

0.5 the precision matrix becomes singular and the HCAR model is undefined.

Because the posterior for a+b is concentrated close to the boundary a+b = 0.5, it

is necessary to investigate what happens in the limit as a+ b→ 0.5. In Section 8.7

we discover that there is a limit to this model but it is an improper distribution.

In the second example we look at the effect of the standard deviations σµ and

σρ. We set νµ = νρ = 0.0 and s = 1.0, and consider three values for σ = σµ = σρ:

1/4, 1/16 and 1/64. The results of calibration and calibrated prediction for this

example are summarised in Figures 8.7 and 8.8.

The posterior for the simulation index, p(m|z), becomes flatter as σ decreases,

leading to a flatter posterior for the calibration inputs, p(θ|z). This was to

be expected from the relationship with the BC model (see Figure 8.2), and

the properties of the BC model (see Section 5.3). The density induced on

αi = p(zi = 1|(Dy)i = 1, µ, ρ, a, b) and βi = p(zi = −1|(Dy)i = −1, µ, ρ, a, b) by

the prior of the likelihood parameters, p(µ, ρ, a, b), becomes focused around 0.5 as

σ decreases. Similarly, the density induced on αi = p(z′i = 1|(Dy′)i = 1, µ, ρ, a, b)

and βi = p(z′i = −1|(Dy′)i = −1, µ, ρ, a, b) by the posterior of the likelihood para-

meters, p(µ, ρ, a, b|z), becomes focused around 0.5 as σ decreases. Correspondingly

the calibrated predictions, p(z′i = 1|z), approach 0.5 as σ decreases. In conclusion,

decreasing σ improves calibration by making p(m|z) nonnegligible for more m, but

increases the uncertainty in our calibrated predictions, which is undesirable.

As for the BC model, local errors affect global fit, so we cannot obtain good

results in calibration and calibrated prediction simultaneously. Therefore, follow-

ing the logic that led us to consider the HBC model, it is natural to look at an

extension of the HCAR model in which µ and ρ vary spatially. We present this

extension in Section 8.8, and call it the heterogeneous hidden conditional autore-

gressive (HHCAR) model.

A final problem with the HCAR model is that of mixing of the MCMC algorithm.

In the next section we investigate tools for diagnosing poor mixing and methods

for improving mixing.
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(b) Prior induced on βi by µ ∼ N (νµ, σ
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ρ ∼ N (νρ, σ
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ρ) and s.
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(f) Calibrated predictions for column 56.

Figure 8.5: Three examples using the HCAR model and changing spatial depen-
dence. The hyperparameters are νµ = νρ = 0.0 and σµ = σρ = 1/32 in all cases;
and independent (black), s = 100.0 (red) and s = 1.0 (blue).
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(a) p(θ|z) approximated from p(θ(m)|z) for
m = 1, . . . ,M using a thin-plate spline.
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(b) p(z′i = 1|z), spatially independent.
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(c) p(θ|z) approximated from p(θ(m)|z) for
m = 1, . . . ,M using a thin-plate spline.
s=100.0.
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(d) p(z′i = 1|z), s = 100.0.
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(e) p(θ|z) approximated from p(θ(m)|z) for
m = 1, . . . ,M using a thin-plate spline.
s=1.0.
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(f) p(z′i = 1|z), s = 1.0.

Figure 8.6: Three examples using the HCAR model and changing spatial depen-
dence. The hyperparameters are νµ = νρ = 0.0 and σµ = σρ = 1/32 in all cases;
and independent, s = 100.0 and s = 1.0.
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(f) Calibrated predictions for column 56.

Figure 8.7: Three examples using the HCAR model and changing σ = σµ = σρ.
The hyperparameters are νµ = νρ = 0.0 and s = 1.0 in all cases; and σ = 1/4
(black), s = 1/16 (red) and s = 1/64 (blue).
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(a) p(θ|z) approximated from p(θ(m)|z) for
m = 1, . . . ,M using a thin-plate spline. σ =
1/4.
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(b) p(z′i = 1|z), σ = 1/4.
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(c) p(θ|z) approximated from p(θ(m)|z) for
m = 1, . . . ,M using a thin-plate spline. σ =
1/16.
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(d) p(z′i = 1|z), σ = 1/16.
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(e) p(θ|z) approximated from p(θ(m)|z) for
m = 1, . . . ,M using a thin-plate spline. σ =
1/64.
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(f) p(z′i = 1|z), σ = 1/64.

Figure 8.8: Three examples using the HCAR model and changing σ = σµ = σρ.
The hyperparameters are νµ = νρ = 0.0 and s = 1.0 in all cases; and σ = 1/4,
s = 1/16 and s = 1/64.
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8.6 Improving Mixing

In theory, the Markov chain described in Section 8.4 is irreducible and the distri-

bution of the Markov chain converges to the stationary distribution p(ζ,φ, m|z).

In practice, for certain values of the hyperparameters the Markov chain mixes very

slowly, so a realisation {(ζ(1),φ(1), m(1)), . . . , (ζ(K),φ(K), m(K))} does not approx-

imate a sample from the stationary distribution p(ζ,φ, m|z) for practical values

of K.

In this section we describe diagnostic tools for identifying convergence and in-

vestigating the reasons for slow mixing, then we present methods for improving

mixing. We will not be illustrating these methods for improving mixing with ex-

amples because they were implemented using a code which we subsequently found

to contain errors. These methods are nonessential to the discussion of the HCAR

model, because the Markov chain mixes well for many values of the hyperparame-

ters. Therefore, because of time constraints, we have chosen not to recode these

methods.

8.6.1 Diagnostic Tools

The divergence of our Markov chain is characterised by a peculiar marginal pos-

terior for the simulation index p(m|z) and heterogeneous changes in plots of m(k)

versus iteration k. An easy way to check convergence is to make a few realisa-

tions of the Markov chain, possibly using different initial values, and compare the

estimates of the stationary distribution. This is called a test of robustness.

In the special case of spatial independence, C = 0, and no blur, D = I, the

estimated posteriors can be compared to exact results. The likelihood p(z|φ,y) =
∏n

i=1 p(zi|φ, yi) where

p(zi = 1|φ, yi) =

∫ ∞

−∞

p(zi = 1, ζi|φ, yi) dζi

= p(ζi > 0|φ, yi)

= Φ(µ + ρyi),
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8.6. Improving Mixing

so the model is now a binomial, probit link GLM,

zi ∼ Bin(1,Φ(µ+ ρyi)).

The maximum likelihood estimates are found by setting the partial differentials of

the log likelihood with respect to µ and ρ to zero. Let nr,s =
∑n

i=1 1[zi = r]1[yi =

s], then the maximum likelihood estimates µ̂ and ρ̂ must satisfy

Φ(µ̂+ ρ̂) =
n1,1

n1,1 + n−1,1
and

Φ(µ̂− ρ̂) =
n1,−1

n1,−1 + n−1,−1
.

If the prior is relatively uninformative then the posterior modes should be close to

these maximum likelihood estimates.

In Section 8.2.5 we showed how the HCAR model degenerates to a BC model

when C = 0 and D = I. The normal priors on µ and ρ induce a prior on the

BC model parameters α and β (see Figure 8.2). If this prior can be approximated

by beta distributions on α and β then we can find the posterior analytically (see

Section 5.2), and compare this to the estimated posterior sample from the Markov

chain.

In performing these analyses we identified that the rate of convergence of the

Markov chain was most affected by the prior for ρ. If the prior, ρ ∼ N (νρ, σ
2
ρ),

allows the magnitude of ρ to be large then mixing is poor, for example with νρ = 0.0

mixing is poor for σρ > 1.0. However, if the prior constrains ρ to be too close to

0.0 then p(m|z) will be flat, which will rarely be appropriate. We want to be able

to explore priors that lead to p(m|z) being different for different m.

To identify a range of σρ for which the Markov chain mixes well and the

corresponding marginal posterior p(m|z) is not flat, we devised the following

experiment. First create a dataset consisting of an observation, z, and three

simulations y(1), y(2) and y(3) such that p(m = 1|z) = p(m = 2|z) and

p(m = 3|z) < p(m = 1|z) (for example see Figure 8.9). For a range of σρ

values generate realisations from the Markov chain to obtain estimates, p̃(m|z),

of p(m|z). For large values of σρ mixing is poor and realisations from the Markov

chain are not good estimates of p(m|z), this is characterised by p̃(m = 1|z) 6=
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Figure 8.9: Example dataset for testing mixing of the Markov chain.

p̃(m = 2|z). For small values of σρ mixing is good and the estimate is good,

but p̃(m = 1|z) = p̃(m = 2|z) = p̃(m = 3|z), i.e. the model does not discrim-

inate between simulations. We want to identify a region between these limiting

cases where mixing is good and the marginal posterior for the simulation index is

not flat, we do this by looking for results where p̃(m = 1|z) = p̃(m = 2|z) and

p̃(m = 3|z) < p̃(m = 1|z). In Section 8.5 the examples for the Buscot dataset

used 1/64 ≤ σρ ≤ 1/4 with νρ = 0.0.

Using the above methods we can identify when the Markov chain mixes poorly

but not why. For a point (ζ(k),φ(k), m(k)) in a realisation of the Markov chain and

an arbitrary simulation indexed by m, we can calculate the log posterior ratio

log

(
p(ζ(k),φ(k), m|z)

p(ζ(k),φ(k), m(k)|z)

)
.

For values of σρ that result in poor mixing we find that the log posterior ratio is

very small for different simulation indexes m, whether or not y(m) is closer to z.

Whereas for Metropolis-Hastings updates of continuous parameters the size of the

proposal can be reduced to improve mixing, for the simulation index m, this is

not possible. The dependence on y(m) is controlled by ρ, so this explains why the

Markov chain convergence is so sensitive to p(ρ).

The log posterior ratio

log

(
p(ζ,φ, m = 2|z)

p(ζ,φ, m = 1|z)

)

can be very small even when y(1) and y(2) differ by only a few pixels. Create a

dataset of observed data z and two simulations y(1) and y(2) satisfying p(m =
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8.6. Improving Mixing

1|z) = p(m = 2|z) (see for example Figure 8.9). Then fix m = 1 and make a

realisation of the Markov chain to obtain a sample from p(ζ,φ|m = 1, z), similarly

for p(ζ,φ|m = 2, z). (Note that mixing is not a problem because m is fixed.) Then

because

p(ζ, m = 2,φ|z)

p(ζ, m = 1,φ|z)
=
p(ζ,φ|m = 2, z)

p(ζ,φ|m = 1, z)
,

appears in the Metropolis-Hastings update form, comparing the conditional poste-

riors for the other parameters given the simulation index tells us something about

mixing. Ifm = 1 it is likely that ζ and φ will take values for which p(ζ,φ|m = 1, z)

is large. We want to know if p(ζ,φ|m = 2, z) is also large at this point, if not it is

less likely a proposal of m = 2 will be accepted. We find that p(ζ|m = 1, z) and

p(ζ|m = 2, z) are very different for priors which lead to poor mixing.

In summary, for two simulations indexed by m = 1 and m = 2 it may be that

p(ζ,φ, m = 1|z) = p(ζ ′,φ′, m = 2|z) for some parameters ζ, ζ ′,φ and φ′, but for

the Metropolis-Hastings update of m (see Section 8.4.3), only m changes and it

may be that p(ζ,φ, m = 1|z) ≫ p(ζ,φ, m = 2|z). In the following sections we

present a number of methods for improving mixing.

8.6.2 Linking Simulations with a Sequence of Images

When a new simulation index proposal is not accepted it may be because the new

simulation differs from the current one by many pixels. If we reduce the number

of pixels that are different between the simulations, we may improve the chance

that the proposal is accepted.

Suppose there are two simulations y(a) and y(b), for which p(m = a|z) =

p(m = b|z) but proposals between simulations are rarely accepted because

p(ζ,φ|m = a, z) and p(ζ,φ|m = b, z) have little overlap. Then construct

a series of images between the simulations that change by one pixel at a

time, y(a) = y(1),y(2), . . . ,y(M) = y(b). Let Y1 = (y(a),y(b)) and Y2 =

(y(a) = y(1),y(2), . . . ,y(M) = y(b)). Then generate a sample from the posterior

p(ζ,φ, m|z, Y2), {ζ(k),φ(k), m(k)|k = 1, . . . , K}, using an MCMC algorithm with

proposal distribution q(m′ = i + 1|m = i) = q(m′ = i − 1|m = i) = 0.5 for
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1 < i < M and q(m′ = 2|m = 1) = q(m′ = M − 1|m = M) = 1.0. Because the

proposed simulation, y(m′), only differs from the current simulation, y(m), by one

pixel the acceptance probability will hopefully be large.

Given the posterior p(ζ,φ, m|z, Y2), we can calculate the posterior ratio given

Y1,

p(ζ,φ, m = a|z, Y1)

p(ζ,φ, m = b|z, Y1)
=
p(ζ,φ, m = a|z, Y2)

p(ζ,φ, m = b|z, Y2)

p(m = b|Y2)

p(m = a|Y2)

p(m = a|Y1)

p(m = b|Y1)
.

In particular, if p(m|Y1) ∝ 1.0 and p(m|Y2) ∝ 1.0, then

p(m = a|z, Y1)

p(m = b|z, Y1)
=

∑K
k=1 1[m(k) = a]

∑K
k=1 1[m(k) = b]

.

The problem with this method is that if the linking images are more probable as

regressors of the observed data than the simulations, the Markov chain may rarely

visit the simulations of interest.

8.6.3 Mixing Distributions

The Markov chain mixes well for some choices of the prior for ρ but poorly for

others. In this section we describe three methods for conferring the mixing prop-

erties of one distribution, called the mixing distribution, onto the distribution of

interest. An overview of the following methods can be found in Gilks and Roberts

(1996).

Importance Sampling

Let ∆ be a subset of the sample space Ω, then the posterior probability that

(ζ,φ, m) ∈ ∆ is

p((ζ,φ, m) ∈ ∆|σρ, z) =

∫∫ M∑

m=1

1[(ζ,φ, m) ∈ ∆]p(ζ,φ, m|σρ, z) dζ dφ

= E (1[(ζ,φ, m) ∈ ∆]|σρ, z)

≈ 1

K

K∑

k=1

1[(ζ(k),φ(k), m(k)) ∈ ∆]

where {(ζ(1),φ(1), m(1)), . . . , (ζ(K),φ(K), m(K))} is a sample from p(ζ,φ, m|σρ, z),

and we show the prior standard deviation for ρ explicitly. Now suppose it is
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difficult to generate a sample from p(ζ,φ, m|σρ, z) but easy to generate a sample

from the mixing distribution p(ζ,φ, m|σ′
ρ, z), then

p((ζ,φ,m) ∈ ∆|σρ, z)

=

∫∫ M∑

m=1

1[(ζ,φ, m) ∈ ∆]
p(ζ,φ, m|σρ, z)

p(ζ,φ, m|σ′
ρ, z)

p(ζ,φ, m|σ′
ρ, z) dζ dφ

= E

(
1[(ζ,φ, m) ∈ ∆]

p(ζ,φ, m|σρ, z)

p(ζ,φ, m|σ′
ρ, z)

∣∣∣∣ σ
′
ρ, z

)

≈ 1

K

K∑

k=1

1[
(
ζ ′(k),φ′(k), m′(k)

)
∈ ∆]

p(ζ ′(k),φ′(k), m′(k)|σρ, z)

p(ζ ′(k),φ′(k), m′(k)|σ′
ρ, z)

where {(ζ ′(1),φ′(1), m′(1)), . . . , (ζ ′(K),φ′(K), m′(K))} is a sample from

p(ζ,φ, m|σ′
ρ, z).

The mixing distribution must be different from the distribution of in-

terest to aid mixing. However, if it is too different then the weights,

p(ζ,φ, m|σρ, z)/p(ζ,φ, m|σ′
ρ, z), will be close to zero for values which occur reg-

ularly, and will be very large for values which occur rarely. Consequently, our

estimates will be dominated by a very small subset of the Markov chain.

Assuming p(z|ζ ′) > 0.0, the weights may be written

p(ζ ′(k),φ′(k), m′(k)|σρ, z)

p(ζ ′(k),φ′(k), m′(k)|σ′
ρ, z)

=
p(ρ′(k)|σρ)

p(ρ′(k)|σ′
ρ)

p(z|σ′
ρ)

p(z|σρ)
,

where the ratio p(z|σ′
ρ)/p(z|σρ) does not cancel. From the importance sampling

identity for ratios of normalising constants (see Equation (6.13)), we find

p(z|σρ)

p(z|σ′
ρ)

= Eσ′

ρ

(
p(z, ζ,φ, m|σρ)

p(z, ζ,φ, m|σ′
ρ)

)

where Eσ′

ρ
(·) is the expectation with respect to p(ζ,φ, m|σ′

ρ, z). Furthermore,

p(z, ζ,φ, m|σρ)

p(z, ζ,φ, m|σ′
ρ)

=
p(ρ|σρ)

p(ρ|σ′
ρ)

provided p(z|ζ) 6= 0. So we can estimate the ratio p(z|σ′
ρ)/p(z|σρ) using the

sample from the mixing distribution.

Simulated Tempering

Simulated tempering extends the idea of importance sampling to a long chain

of variable length runs from different samplers. Suppose {p(ζ,φ, m|σ(i)
ρ , z)|i =
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1, . . . , s} is a sequence of distributions that differ only by the prior standard de-

viation of ρ, and let σ
(1)
ρ = σρ and σ

(i)
ρ < σ

(i−1)
ρ so as the index increases we

move further from distribution of interest but improve mixing. At the end of each

MCMC iteration a new standard deviation index j is proposed with probability

qi,j where qi,i+1 = qi,i−1 = 0.5 for 1 < i < s and q1,2 = qs,s−1 = 1.0. The proposal

is accepted with probability

min

{
1,
cjp(z, ζ,φ, m|σ(j)

ρ )qj,i

cip(z, ζ,φ, m|σ(i)
ρ )qi,j

}

where the constants {ci|i = 1, . . . , s} are chosen so the chain divides its time

equally between all samplers. Reject all samples for which i 6= 1 to obtain a

sample from the distribution of interest, p(ζ,φ, m|z, σρ). The problem with this

method is the specification of the constants. The acceptance probability will be

optimal if ci ∝ p(z|σ(i)
ρ ) (see Section 3.2). In this case we could estimate the ratios,

cj/ci, offline using importance sampling as described above.

MCMCMC

A variation on the above method which avoids the need for the normalising con-

stant ratio is the Metropolis-Coupled MCMC (MCMCMC) method. Chains are

run in parallel with stationary distributions p(ζ,φ, m|σ(i)
ρ , z) for i = 1, 2, . . . , s.

After each iteration a swap is proposed between chains i and j and accepted with

probability

min

{
1,
p(ζ,φ, m(j)|σ(i)

ρ , z) p(ζ,φ, m(i)|σ(j)
ρ , z)

p(ζ,φ, m(i)|σ(i)
ρ , z) p(ζ,φ, m(j)|σ(j)

ρ , z)

}
.

The normalising constants cancel in this ratio unlike the simulated tempering

method. Output from the mixing chains is discarded and the original chain, i = 1,

provides a sample from the distribution of interest.

8.6.4 Multidimensional Proposals

We may be able to improve mixing by using multidimensional proposals, i.e. by

updating two or more parameters together. For example, we can propose m′ from

q(m′|m), then given this value propose new values of other parameters, and accept
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or reject the whole set. The proposal and posterior ratios may become quite

complex. We develop two methods: one for parameters for which we can sample

from the full conditionals, µ, ρ and ζi, i = 1, 2, . . . , n, and one for parameters for

which we cannot, a, b, c and d.

We present our algorithm for updating m together with a parameter for which

it is possible to sample from the full conditional, using µ. The algorithm is as

follows:

1. Propose m′ from q(m′|m).

2. Propose µ′ from p(µ|ζ, ρ, a, b, c, d,m′, z).

3. Accept (m′, µ′) with probability

α = min

(
1,
q(m|m′)p(µ|ζ, ρ, a, b, c, d,m, z)

q(m′|m)p(µ′|ζ, ρ, a, b, c, d,m′, z)

p(ζ, µ′, ρ, a, b, c, d,m′|z)

p(ζ, µ, ρ, a, b, c, d,m|z)

)
.

Similar algorithms can be constructed for (m′, ρ′) and (m′, ζ ′i) for i = 1, 2, . . . , n.

Furthermore, the algorithm can be extended to more than two parameters, for

example propose m′, then µ′, then ρ′, and accept or reject (m′, µ′, ρ′).

Sampling from the full conditional should increase the posterior probabil-

ity of the whole set, e.g. p(ζ, µ′, ρ, a, b, c, d,m′|z) will probably be larger than

p(ζ, µ, ρ, a, b, c, d,m′|z). The simulation index together with parameters for which

the full conditional is not available, could be updated using this method, by replac-

ing the full conditional with an arbitrary proposal distribution. However, in this

case there is no reason to suppose the probability of the whole set will increase.

We present our algorithm for updating m together with parameters for which it

is not possible to sample from the full conditional, using (c, d). The algorithm is

as follows:

1. Propose m′ from q(m′|m).

2. Propose (c′, d′) from q(c′, d′|c, d).

3. Accept (c′, d′) as part of the proposal with probability

f(c′, d′|c, d,m′) = min

(
1,
q(c, d|c′, d′)
q(c′, d′|c, d)

p(ζ, µ, ρ, a, b, c′, d′, m′|z)

p(ζ, µ, ρ, a, b, c, d,m′|z)

)
.
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If (c′, d′) is rejected return to step 2.

4. Accept (m′, c′, d′) with probability

α = min

(
1,
q(m|m′)q(c, d|c′, d′)f(c, d|c′, d′, m))

q(m′|m)q(c′, d′|c, d)f(c′, d′|c, d,m′)

p(ζ, µ, ρ, a, b, c′, d′, m′|z)

p(ζ, µ, ρ, a, b, c, d,m|z)

)
.

This choice of acceptance probability preserves detailed balance. A similar algo-

rithm can be constructed for (m′, a,′ b′). Furthermore, we can combine our two

algorithms for parameters for which the full conditional is and is not available, e.g.

(m′, a′, b′, µ′, ρ′).

Ideally we would update m together with ζ, because p(ζ|m, z) is very different

for different m. However, the full conditional for ζ, p(ζ|φ, m, z), is a truncated

multivariate Normal distribution, for which no efficient sampling algorithms cur-

rently exist.

8.6.5 Integrating Out ζ

The main reason it is difficult to update the simulation index m is because

p(ζ|m, z) varies greatly with changes in m. Therefore we considered integrating ζ

out of the likelihood,

p(z|φ,y) =

∫
p(z, ζ|φ,y) dζ

=

∫
p(z|ζ)p(ζ|φ,y) dζ

=

∫ n∏

i=1

p(zi|ζi)p(ζ|φ,y) dζ

=

∫ n∏

i=1

1[zi = 1{−1,1}[ζi > 0]]p(ζ|φ,y) dζ

where ζ|φ,y ∼ MVN (µ1 + ρDy, (I − C)−1). The right-hand side of this equa-

tion is the multivariate Normal integral, which cannot be evaluated sufficiently

quickly. Therefore, in general, it is not possible to integrate out ζ. However, in

the independent case,

p(z|φ,y) =
n∏

i=1

Φ
(
(−1)

1−zi
2 (µ+ ρ(Dy)i)

)
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which can be evaluated sufficiently quickly. We found this led to improved mixing

of the MCMC algorithm.

8.7 The Hidden Intrinsic Autoregressive Model

In the Buscot examples of the HCAR model (see Section 8.5), we found the pos-

terior density for the spatial dependence parameters, a and b, was often focused

close to a+ b = 0.5. However, when a+ b = 0.5 the precision matrix Q is singular

because the eigenvalue 1 − 2a − 2b = 0.0. Quoting from Besag and Kooperberg

(1995):

[A] common disadvantage of conditional autoregressions is that appre-

ciable correlations between the [variables] at neighbouring sites require

parameter values extremely close to a particular boundary of the pa-

rameter space.

They turn this to their advantage by considering intrinsic limits of conditional

autoregressions. In this section we first look at the density of a CAR process on

2 variables as the intrinsic limit is approached, then we introduce the intrinsic

autoregressive (IAR) model by considering a CAR with a linear constraint. We

consider the implications of using a hidden IAR model instead of the HCAR model

in our framework, and look at some examples.

Motivation

Consider a CAR on 2 variables x1 and x2 with

E (xi|x−i) = µi + ρ(x−i − µ−i) and

Var (xi|x−i) = 1.0

for i = 1, 2. The joint density is bivariate Normal

p(x1, x2) ∝ exp

(
−1

2

{
(x1 − µ1)

2 − 2ρ(x1 − µ1)(x2 − µ2) + (x2 − µ2)
2
})

.

Figure 8.10 shows the effect of increasing ρ to the critical value of 1.0. Increasing

ρ from 0.0 turns the circular contours into ellipses with main axes on a gradient

189



Chapter 8. The Hidden Conditional Autoregressive Model

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x
2

(a) ρ = 0.0

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x
2

(b) ρ = 0.5

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x
2

(c) ρ = 0.9

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x
2

(d) ρ = 1.0

Figure 8.10: The density of the CAR model on two variables as the precision
matrix becomes singular. The means are µ1 = 0.5 and µ2 = −0.5. Figure 8.10(d)
shows the (improper) density for the limiting IAR model.

of 1.0. When ρ = 1.0 the contours become straight lines. We find that taking

a slice perpendicular to these lines gives a Normal distribution. So we can think

of the density as an infinite ridge of Normal cross-section, which clearly does not

integrate to 1.0: it is an improper density.

The improper density can be written

p(x1, x2) ∝ exp

(
−1

2
((x1 − µ1) − (x2 − µ2))

2

)
.

Let d = (x1 − x2) which is proportional to the perpendicular distance from the

main axis of the density, then d ∼ N (µ1 − µ2, 1), i.e. the density is proper on this

lower dimension. The joint density can be loosely regarded as the product of the

proper density on x1 − x2 and an improper (diffuse) density on x1 + x2.
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The Intrinsic Autoregressive Model

As we have seen in Figure 8.10(d), the IAR density is invariant to the addition of

a constant to x1 and x2. Therefore to define the multivariate IAR we consider the

density of a CAR with the constraint that the mean is fixed. Later we will define

this density to hold for all values regardless of the value of the mean. We will see

the resulting distribution is invariant to additions to the mean.

Suppose ζ is a zero mean CAR with precision matrix Q, so ζ ∼ MVN (0,Q−1),.

Let the eigenvalue and eigenvector matrices be

Λ = diag(λ1, λ2, . . . , λn) and

V = (v1|v2| . . . |vn)

where V TV = I. Assuming Q is block-circulant, one eigenvector will be

(1, 1, . . . , 1)/
√
n, without loss of generality let this be v1.

We want to calculate the density p(ζ|vT
1 ζ/

√
n = w) for some constant w. Let

t = V Tζ then t ∼ MVN (0,Λ−1), i.e. ti
iid∼ N (0, λ−1

i ) for i = 1, . . . , n. We have

vT
1 ζ = t1 =

√
nw. Then

p(t|t1 =
√
nw) = 1[t1 =

√
nw]

n∏

i=2

p(ti),

E
(
t|t1 =

√
nw
)

= (
√
nw, 0T)T and

Prec
(
t|t1 =

√
nw
)

= Λ̃

where Λ̃ = diag(0, λ2, . . . , λn). Converting back to ζ = V t,

E
(
ζ|vT

1 ζ/
√
n = w

)
= V




√
nw

0



 =




w

w
...

w




and

Prec
(
ζ|vT

1 ζ/
√
n = w

)
= V Λ̃V T,

so the density is

p(ζ|vT
1 ζ/

√
n = w) = (2π)−

n−1
2 (

n∏

i=2

λi)
1
2 exp

(
−1

2
ζT(V Λ̃V T)ζ

)
.
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Note that w does not appear in the density, it is implicit in the fact that the density

is only nonzero where vT
1 ζ/

√
n = w. The only changes we needed to make to apply

the constraint was to zero the appropriate eigenvalues and then renormalize.

The intrinsic autoregressive (IAR) model for ζ is defined to have improper

density

q(ζ) = (2π)−
n−1

2 (|Q|⋆) 1
2 exp

(
−1

2
ζT(V Λ̃V T)ζ

)

for all ζ, where the generalised determinant, |Q|⋆, is the product of the nonzero

eigenvalues. This is the same density as for the CAR with the constraint that the

mean is fixed, but now it is defined for all ζ. Compare this to the earlier example

for two variables for which the joint density can loosely be defined as the product

of a Normal density on x1 − x2 and an improper density on x1 + x2. The density

is invariant to the addition of a constant to all variables. The density is proper on

a lower dimension, namely that defined by a constant mean constraint.

Likelihood

The HIAR limit of our HCAR model has improper density

q(ζ|ρ, a, b, c, d,y) = (2π)−
n−1

2 (|Q|⋆) 1
2

× exp

(
−1

2
(ζ − ρDy)T(I − C)(ζ − ρDy)

)

where µ drops out of the model because of the invariance to the addition of a

constant to all variables. The mean is ρDy(m) and precision matrix is Q = I−C,

although they are not strictly means and precisions because the density is improper

we will continue to refer to them as such for convenience.

Posterior, Calibration and Calibrated Prediction

We now consider how Bayesian calibration and calibrated prediction is affected by

replacing the HCAR model with the HIAR model. In Section 8.3 we calculated

the marginal variance, Var (ζi|φ, m), to be

1

rc

r−1∑

i′=0

c−1∑

j′=0

(1 − 2a cos(2πi′/r) − 2b cos(2πj′/c))−1.
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8.7. The Hidden Intrinsic Autoregressive Model

As a + b → 0.5 this variance will tend to ∞. Consequently we cannot produce

calibrated predictions using the HIAR model. Furthermore, when using the HCAR

model we should use the prior p(a, b) to ensure the that the parameter values do

not approach the boundary a+ b = 0.5.

Calibration is possible using the HIAR model, because although the density is

improper the posterior for p(m|z) is proper provided that not all zi take the same

value. We will prove this for the two parameter case described earlier.

First we will show that it is sufficient to prove that q(ζ|φ, m, z) is proper, where

φ = (ρ, a, b, c, d). The prior p(φ)p(m) = p(ρ)p(a, b)p(c, d)p(m) is proper but the

prior and likelihood do not combine to define a proper joint probability model,

p(ζ,φ, m, z). However, using Bayesian algebra we can write the unnormalised

posterior density function as

q(ζ,φ, m|z) ∝ p(z|ζ)q(ζ|φ, m)p(φ)p(m)

The integral of the right-hand side of this equation is equal to the marginal for

z, m(z). So proving that the posterior is proper is equivalent to proving that the

marginal for z is finite,

m(z) =

M∑

m=1

∫∫
p(z|ζ)q(ζ|φ, m)p(φ)p(m) dζ dφ

=
M∑

m=1

∫ {∫

B

q(ζ|φ, m) dζ

}
p(φ)p(m) dφ,

where B =
{
ζ ∈ R

n|1{−1,1}[ζi > 0] = zi for i = 1, . . . , n
}
. If we can prove

∫

B

q(ζ|φ, m) dζ ≤ U, (8.13)

for some finite constant U then m(z) ≤∑M
m=1

∫
Up(φ)p(m) dφ = U . So we only

need to prove Equation (8.13). It is logical that the propriety of the posterior

should be connected to the values z takes, because we expect that if all zi take

the same value the posterior is not proper.

With only two pixels the precision matrix, Q, is

 1 −1

−1 1
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and

q(ζ|φ, m) ∝ exp

(
−1

2

(
(ζ1 − ρ(Dy(m))1) − (ζ2 − ρ(Dy(m))2

)2
)
.

If z1 and z2 have the same value then the integral is not finite. Consider Fig-

ure 8.10(d) and suppose z1 = z2 = 1, then the integral corresponds to finding the

volume under the ridge with the Normal cross-section in the top right quadrant,

but this is clearly infinite. Now consider z1 = −1 and z2 = 1, we now need the

volume of the ridge in the top-left quadrant. Although the region of integration is

still infinite, the function decreases exponentially so the integral should be finite,

∫

B

q(ζ|φ, m) dζ ∝
∫

ζ1≤0

∫

ζ2>0

exp

(
−1

2
((ζ1 − ρ(Dy(m))1) − (ζ2 − ρ(Dy(m))2))

2

)
dζ1 dζ2.

Let a1 = −ρ(Dy(m))1, a2 = −ρ(Dy(m))2, d1 = (ζ1 + a1) − (ζ2 + a2) and d2 =

(ζ1 + a1) + (ζ2 + a2), then the boundaries ζ1 = 0.0 and ζ2 = 0.0 correspond to

d1 + d2 = 2a1 and d2 − d1 = 2a2 respectively,

∫ a1−a2

−∞

∫ 2a1−d1

2a2+d1

exp

(
−1

2
d2

1

)
dd2 dd1

=

∫ a1−a2

−∞

2(a1 − a2 − d1) exp

(
−1

2
d2

1

)
dd1

= −2

∫ a1−a2

−∞

d1 exp

(
−1

2
d2

1

)
dd1 + 2(a1 − a2)

∫ a1−a2

−∞

exp

(
−1

2
d2

1

)
dd1

= 2 exp

(
−1

2
(a1 − a2)

2

)
+ 2

√
2π(a1 − a2)Φ(a1 − a2),

which is finite for all a1 and a2.

To summarise, if all the zis take the same value then the posterior mean for ζ is

only constrained to be positive or negative so the posterior is improper. However,

if just one zi is different, the strong correlation between pixels requires that the

posterior have a well defined mean.

Buscot Example

We now present an example of calibration for the Buscot dataset using the HIAR

model. For comparison to the second HCAR model example, see Figures 8.7 and
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8.8. Heterogeneous Hidden Conditional Autoregressive Model

8.8, we look at the effect of the standard deviation σρ. We set νρ = 0.0 and s = 1.0,

and consider three values for σρ: 1/4, 1/16 and 1/64. The results of calibration

for this example are shown in Figure 8.11.

The results of calibration for the HCAR and HIAR models become closer as

σρ decreases, but the posterior for the calibration inputs, θ, is always flatter for

the HIAR model. It is interesting to note that the type of predictions possible

using GLUE, i.e. the expected future prediction E (y′|z), can be produced using

the HIAR model, although this likelihood model is improper (see Section 4.2.3).

However, the HIAR model is not a practical likelihood model because it does not

allow calibrated predictions to be calculated, p(z′i = 1|z).

8.8 Heterogeneous Hidden Conditional Autore-

gressive Model

In much the same way that the fit of the BC model was improved by allowing the

parameters to be heterogeneous, we believe that the fit of the HCAR model will

improve by allowing some of the parameters to be heterogeneous. The difference

between the HCAR and HHCAR models is that the parameters µ and ρ now vary

spatially.

Likelihood

Following the approach used in Section 8.2, we define the heterogeneous hidden

conditional autoregressive (HHCAR) model through the full conditionals. The

conditional mean and variance are

E (ζi|ζ−i,µ,ρ, a, b,y) = µi + ρiyi +

n∑

j=1

Cij (ζj − µj − ρjyj) and

Var (ζi|ζ−i,µ,ρ, a, b,y) = 1.0,

where µ and ρ are now vectors. We define the spatial interactions matrix as

Cij =





a if i
ew∼ j

b if i
ns∼ j

0.0 otherwise,
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Figure 8.11: Three examples using the HIAR model and changing σρ. The hyper-
parameters are νρ = 0.0 and s = 1.0 in all cases; and σρ = 1/4 (black), s = 1/16
(red) and s = 1/64 (blue).
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where |a| + |b| < 0.5, and we assume no blur, D = I. The joint distribution is

ζ|µ,ρ, a, b,m ∼ MVN
(
µ + diag(ρ)y, (I − C)−1

)
.

Priors

The priors for the spatial interaction parameters, a and b, and the simulation

index, m, and the conditional distributions for y and y′ given m, are as for the

HCAR model, see Section 8.2.3. We define the priors for µ and ρ through the full

conditionals,

µi|µ−i ∼ N
(

(1 − λµ)νµ +
λµ

4

∑

j∈δi

µj , σ
2
µ

)
and

ρi|ρ−i ∼ N
(

(1 − λρ)νρ +
λρ

4

∑

j∈δi

ρj , σ
2
ρ

)

where νµ, νρ ∈ R, σµ, σρ ∈ R≥0, 0.0 ≤ λµ, λρ < 1.0, and δi is the set of first-order

neighbours of pixel i. Let G be a matrix with elements

Gij =






1
4

if i
ns∼ j or i

ew∼ j

0 otherwise,

then

µ ∼ MVN ((1 − λµ)νµ1, σ
2
µ(I − λµG)−1) and

ρ ∼ MVN ((1 − λρ)νρ1, σ
2
ρ(I − λρG)−1).

Posterior, Calibration and Calibrated Prediction

The posterior distribution is

p(ζ,µ,ρ, a, b,m|z) ∝ p(z|ζ)p(ζ|µ,ρ, a, b,m)p(µ)p(ρ)p(a, b)p(m).

We cannot evaluate this density directly because we do not know the normalis-

ing constant, but if we can generate a sample, {ζ(k),µ(k),ρ(k), a(k), b(k), m(k)|k =

1, . . . , K}, from the posterior then we can perform calibration and make calibrated

predictions.
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MCMC Algorithm

Our MCMC algorithm for sampling from the posterior is similar to that used

for the HCAR model, see Section 8.4. For the Metropolis-Hastings updates of the

parameters a, b and m, we only need to modify the posterior ratios to take account

of the new likelihood. For the Gibbs update of ζi the full conditional is now

ζi|ζ−i,φ, m, z ∼ 1[zi = 1{−1,1}[ζi > 0]]N (µi + ρiyi +
n∑

j=1

Cij(ζj − µj − ρjyj), 1.0).

The parameters µ and ρ can be updated term by term using Gibbs updates. The

full conditional for ρi, assuming p(ζ,µ,ρ−i, a, b,m, z) > 0.0, is

p(ρi|ζ,µ,ρ−i, a, b,m, z) ∝ p(ζ|µ, ρi,ρ−i, a, b,m)p(ρi|ρ−i)

∝ exp

(
−1

2
(ζ − µ − diag(ρ)y)T(I − C)(ζ − µ − diag(ρ)y)

)

× exp

(
− 1

2σ2
ρ

(ρi − (1 − λρ)νρ − λρρ̄δi)
2

)
.

Completing the square for ρi, we find

ρi|ζ,µ,ρ−i, a, b,m, z ∼

N
(

1

1 + σ2
ρy

2
i

(
σ2

ρyi((I − C)ζ)i − σ2
ρyi((I − C)µ)i + σ2

ρayi

∑

j∈ew(i)

ρjyj

+ σ2
ρbyi

∑

k∈ns(i)

ρkyk + (1 − λρ)νρ + λρρ̄δi

)
,

σ2
ρ

1 + σ2
ρy

2
i

)
.

Similarly, provided p(ζ,µ−i,ρ, a, b,m, z) > 0.0, the full conditional for µi is

µi|ζ,µ−i,ρ, a, b,m, z

∼ N
(

1

1 + σ2
µ

(
σ2

µ((I − C)ζ)i − σ2
µ((I − C)diag(ρ)y)i + σ2

µa
∑

j∈ew(i)

µj

+ σ2
µb
∑

k∈ns(i)

µk + (1 − λµ)νµ + λµµ̄δi

)
,

σ2
µ

1 + σ2
µ

)
.

Buscot Example

Ideally, we would now present examples of calibration and calibrated prediction

for the Buscot dataset using the HHCAR model, for comparison to the HCAR
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8.8. Heterogeneous Hidden Conditional Autoregressive Model

model (see Section 8.5). However, for the MCMC algorithm described above mix-

ing is poor in all cases of interest. The poor mixing can be attributed to the

heterogeneous parameters µ, ρ and ζ. Mixing was better for the HBC model, see

Section 7.6, because each parameter in the HHCAR model appears in rather a lot

of the different factors in the probability model compared to the HBC model, and

intuitively this means that the parameters will be a posteriori more correlated.

Although it is not possible to carry out calibration and calibrated prediction

using our MCMC algorithm, by fixing the simulation index m we can demonstrate

the impact of different prior assumptions about µ, ρ, a and b on posterior inference.

For the following example we select the simulation with the fewest falses, m =

110. Then the calibrated prediction given m = 110 is

p(z′i = 1|m = 110, z) =
∫∫∫∫

p(ζ ′i > 0|µ,ρ, a, b,m = 110)p(µ,ρ, a, b|m = 110, z) dµ dρ da db

where ζ ′i|µ,ρ, a, b,m = 110 is Normal. We run our MCMC algorithm withm = 110

fixed to obtain a sample, {µ(k),ρ(k), a(k), b(k)|k = 1, . . . , K}, from the posterior

p(µ,ρ, a, b|m = 110, z), then

p(z′i = 1|m = 110, z) ≈ 1

K

K∑

k=1

p(ζ ′i > 0|µ(k),ρ(k), a(k), b(k), m = 110).

The results of calibrated prediction with m = 110 fixed using the HHCAR

model are shown in Figure 8.12. The main feature of the results is that allowing

a = b 6= 0.0 leads to calibrated predictions with more certainty at the boundary

than away from it. We expect that these seemingly counterintuitive results arise

because the large regions of true-positives and true-negatives, within the channel

and on the floodplain away from the flood extent boundary, are accounted for by

the values of a and b and not by the values of µ and ρ. Whereas, the behaviour

close to the flood extent boundary is still accounted for by the values of µ and ρ.

These results suggest that we should set a = b = 0.0 in the HHCAR model.

If we assume a = b = 0.0, the HHCAR model is essentially an alternative pa-

rameterisation of the HBC model. Furthermore, we can integrate out ζ because
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(a) Calibrated predictions withm = 110 for
column 56.
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(b) p(z′i = 1|m = 110, z), a = b = 0.0 and
λµ = λρ = 0.0.
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(c) p(z′i = 1|m = 110, z), a = b = 0.0 and
λµ = λρ = 0.9.
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(d) p(z′i = 1|m = 110, z), s = 10.0 and
λµ = λρ = 0.0.
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(e) p(z′i = 1|m = 110, z), s = 10.0 and
λµ = λρ = 0.9.

Figure 8.12: Four examples of calibrated prediction with m = 110 fixed using the
HHCAR model. The hyperparameters are νµ = νρ = 0.0 and σµ = σρ = 1.0 in all
cases; and a = b = 0.0 and λµ = λρ = 0.0 (black), a = b = 0.0 and λµ = λρ = 0.9
(red), s = 10.0 and λµ = λρ = 0.0 (blue), and s = 10.0 and λµ = λρ = 0.9 (green).

200



8.9. Continuous Hidden Conditional Autoregressive Model

the multivariate Normal integral is now the product of Normal integrals, see Sec-

tion 8.6.5. Finally, to improve mixing of the MCMC algorithm, instead of updating

the vectors µ and ρ term by term, we can update the whole vectors using Gibbs

updates where the full conditionals are multivariate Normals with block-circulant

precision matrices. We could also investigate treating m as a model index and us-

ing one of the various within-model sampling methods, one of which was applied

to the HBC model in Section 7.7. We leave these ideas to be explored in future

work, and in the next section consider a likelihood that uses continuous simulation

values.

8.9 Continuous Hidden Conditional Autoregres-

sive Model

In all the likelihood models considered so far the output of the flood inundation

simulator, y, is modelled as a binary image. In reality, the flood inundation

simulator outputs the water depth in each pixel and we threshold these values to

get the binary image.

Let d be an array of simulated water depths, where di = 0.0 if pixel i is dry and

di > 0.0 if pixel i is wet. The magnitude of di is an indicator of how wet pixel i is

– near the flood extent boundary we expect di to be close to 0.0, whereas in the

channel we expect di to be larger. However, di does not indicate how dry pixel i

is.

By combining the simulated water depths, d, with the topography, t, we can

produce an indicator of how dry a pixel is. Let

yi = −ti + tiw + diw

where iw is the closest wet pixel to pixel i. If pixel i is wet, then iw = i and yi

is just the water depth di. If pixel i is dry, then −yi measures the height of the

topography above the closest water surface.
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Likelihood

We can define the continuous hidden conditional autoregressive (CHCAR) model

through the full conditionals as we did the HCAR and HHCAR models. We omit

a detailed derivation for the sake of brevity. The likelihood is

ζ|µ, ρ, a, b,y ∼ MVN (µ1 + ρy, (I − C)−1),

where we have assumed no blur, D = I.

Priors

The priors for µ and ρ, the spatial interaction parameters, a and b, and the simu-

lation index, m, and the conditional distributions for y and y′ given m, are as for

the HCAR model, see Section 8.2.3.

Posterior, Calibration and Calibrated Prediction

The posterior distribution is

p(ζ, µ, ρ, a, b,m|z) ∝ p(z|ζ)p(ζ|µ, ρ, a, b,m)p(µ)p(ρ)p(a, b)p(m).

We cannot evaluate this density directly because we do not know the normal-

ising constant, but if we can generate a sample, {ζ(k), µ(k), ρ(k), a(k), b(k), m(k)|k =

1, . . . , K}, from the posterior then we can perform calibration and make calibrated

predictions.

Buscot Example

We now present an example of calibration and calibrated prediction using the

CHCAR model. We look at the effects of spatial dependence in ζ, and σµ = σρ.

We set νµ = νρ = 0.0, and consider three cases: spatially independent and σµ =

σρ = 1.0, s = 10.0 and σµ = σρ = 1.0, and s = 10.0 and σµ = σρ = 0.1. The

results of calibration and calibrated prediction are shown in Figures 8.13 and 8.14.

Introducing spatial dependence in ζ leads to the marginal posteriors for the sim-

ulation index, m, and the calibration inputs, θ, being flatter (see Figures 8.13(a),

8.14(a) and 8.14(c)). Furthermore, the calibrated prediction p(z′i = 1|z) decreases
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Figure 8.13: Three examples using the CHCAR model. The hyperparameters are
νµ = νρ = 0.0 in all cases; and spatially independent and σµ = σρ = 1.0 (black),
s = 10.0 and σµ = σρ = 1.0 (red), and s = 10.0 and σµ = σρ = 0.1 (blue).

for all pixels, so the uncertainty in the calibrated predictions becomes larger in

regions that we had predicted to be wet and smaller in regions we had predicted

to be dry (see Figure 8.13(b)).

As σµ = σρ decreases, the calibrated prediction p(z′i = 1|z) increases for all

pixels. This increase is substantial for the low-lying floodplain. However, the pos-

terior for the simulation index, m, is now bimodal. In addition to the expected

peak corresponding to the simulation with the fewest falses, there is a peak corre-

sponding to the driest simulations (see Figure 8.13(a)). This leads to an unusual

posterior for the calibration inputs, θ (see Figure 8.14(c)). We propose that this

occurs for the following reason. The number of dry pixels in any given simulation

is much greater than the number of wet pixels, and |yi| is much larger for dry pixels

than for wet pixels. If the number of negatives in y⋆ is greater than the number

of negatives in y, then y⋆
i < yi for almost all i because the water surface changes.

Under certain hyperparameter settings, the increased probability of the observed

negatives will outweigh the decreased probability of the observed positives.

Future work should develop and test alternative measures of how dry a pixel is.

It should also investigate further the effect of prior specifications on posterior infer-

ence, particularly the preference for dry simulations under certain hyperparameter
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(a) p(θ|z) approximated from p(θ(m)|z) for
m = 1, . . . ,M using a thin-plate spline.
Spatially independent and σµ = σρ = 1.0.
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(c) p(θ|z) approximated from p(θ(m)|z) for
m = 1, . . . ,M using a thin-plate spline. s =
10.0 and σµ = σρ = 1.0.
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(e) p(θ|z) approximated from p(θ(m)|z) for
m = 1, . . . ,M using a thin-plate spline. s =
10.0 and σµ = σρ = 0.1.
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Figure 8.14: Three examples using the CHCAR model. The hyperparameters are
νµ = νρ = 0.0 in all cases; and spatially independent and σµ = σρ = 1.0, s = 10.0
and σµ = σρ = 1.0, and s = 10.0 and σµ = σρ = 0.1.
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settings.

In this chapter we developed the HCAR model and a number of variants of

this model: the HIAR, HHCAR and CHCAR models. For each likelihood model

we demonstrated the effect of prior assumptions on posterior inference. Using

the HCAR model it is not possible to obtain good results for calibration and

calibrated prediction simultaneously. Using the HIAR model calibrated predictions

are not possible at all. The HHCAR and CHCAR models showed promising results

for calibration and calibrated prediction. The development of the HHCAR and

CHCAR models would be worth considering in future work. Mixing of the MCMC

algorithm was a problem for all the likelihood models and we described a number

of methods for improving mixing. In the next chapter we present our conclusions

and future work.
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Chapter 9

Conclusions and Future Work

In this chapter we present conclusions for each of the research chapters in the

thesis and then look more generally at future work.

In Chapter 5 we introduced a Bayesian framework for calibrating flood inun-

dation simulators on an observation of flood extent, and then making calibrated

predictions of a future event. By illustrating the framework using a directed acyclic

graph (DAG) it is clear how the problem can be broken down into a number of

smaller tasks. We identified likelihood specification as the most important task

for calibration, and therefore assumed there was no variable input uncertainty and

no observation error, so we could focus solely on this task. Using our Bayesian

framework we were able to produce maps of the probability of flooding for a par-

ticular level flood event (e.g. the 1 in 100 year flood). A sensible extension of

this approach would be to develop a framework which can produce maps of the

probability of flooding in any given year from any level flood event.

We showed how to calibrate flood inundation simulators and make calibrated

predictions of a future event using our Bayesian framework. Then we gave an

example using the binary channel (BC) model for the likelihood and the Buscot

dataset (introduced in Section 2.4). There is no validation data for the Buscot

dataset, so we can only assess the performance of a particular likelihood model

on what we believe to constitute sensible results for calibration and calibrated

prediction. We recognise that this is not ideal, and suggest that validation on

observations of future events should be a topic for future research. For this example

we provided plots of E (y′|z) for comparison to the maps of flood probability in
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GLUE.

For calibration, if two simulations differ by only one pixel we expect the poste-

rior for the simulations to be similar. For calibrated prediction, simulations are

invariably correct within the channel and on the floodplain away from the flood

boundary. Therefore we expect calibrated predictions to be relatively certain in

these regions. The BC model does not represent spatial dependence, heterogeneity

or blur. Consequently, using the BC model for the likelihood it was not possible to

meet both these criteria simultaneously (i.e. using the same prior specification).

This motivated the search for a more appropriate likelihood model.

In Chapter 6 we extended the Ising model (see Besag, 1974) to regression on

a binary image. We reviewed methods for dealing with the intractable normalis-

ing constant and proposed novel applications of path sampling to paths between

images and parameterisations. We also extended path sampling to sampling over

areas. When these methods still proved too inefficient for practical use we pro-

posed a number of approximations to path sampling and devised an experiment

to test their adequacy. Unfortunately we did not identify a method which was

both efficient and accurate enough for use in our Bayesian framework. Future

work might consider more variants of the path sampling methodology, or investi-

gate further the possibility of avoiding the calculation of the normalising constant

using the auxiliary variable method from Møller et al. (2004). The latter method

would require fast simulation methods to be developed for the Ising model with

regression on a binary image.

In Chapter 7 the heterogeneous binary channel (HBC) model was developed,

which extended the BC model to account for heterogeneity and spatial depen-

dence. Using the HBC model for the likelihood it was possible to meet our criteria

for calibration and calibrated prediction. However, the HBC model allows neg-

ative regression on the simulator output, so the probability that the observed

value is different from the simulated value can be greater than 0.5. To investi-

gate whether this was important we developed the positive heterogeneous binary

channel (PHBC) model, which forced the regression to be always positive. For

207



Chapter 9. Conclusions and Future Work

the Buscot dataset there was no obvious advantage using the PHBC model, and

we found that provided there was spatial dependence in the HBC model negative

regression was rare. To test the necessity of forcing positive regression further we

require observations of flood extent at various magnitudes.

By constructing a one-dimensional toy dataset we were able to show how the

distribution of t false-positives in the simulator output affects the posterior. We

found that a simulation with a block of false-positives away from the flood bound-

ary had greater posterior density than a simulation with a block of false-positives

on the flood boundary, because of spatial dependence. This is intuitively an un-

desirable property because blocks of false-positives near the flood boundary are

to be expected, whereas blocks of false-positives away from the boundary are not.

Another undesirable property of the HBC and PHBC models is that there are no

explicit links between true-positives and false-negatives, or between true-negatives

and false-positives.

For some prior specifications we found that the mixing of the MCMC algorithm

was poor, so a realisation of the Markov chain is a poor estimate of a sample

from the distribution of interest. We considered a within-model sampling (WMS)

strategy for sampling from the posterior when mixing is poor, but this suffered

high variance as very few sample points contributed to the estimate.

In Chapter 8 we extended the hidden conditional autoregressive (HCAR) model

(see Weir and Pettitt, 1999) to regression on a binary image. By adopting toroidal

boundary conditions we showed that the determinant calculation necessary for

calibration, and the matrix inversion necessary for calibrated prediction, are com-

putationally feasible through the use of block-circulant matrix results. We found

that allowing more spatial dependence by a suitable prior choice leads to a flatter

posterior for the simulation index in calibration, but calibrated predictions become

more uncertain. As for the BC model, using the HCAR model as the likelihood

it is not possible to meet our criteria for calibration and calibrated prediction

simultaneously.
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We found that, unless prevented from doing so by suitable prior choice, the pos-

terior for the spatial interaction parameters will be focused close to a boundary

of the parameter space at which the HCAR model does not hold. We showed

that the limit of the HCAR model as these parameters approach this boundary is

improper, and we call this the hidden intrinsic autoregressive (HIAR) model. Cal-

ibrated predictions are not possible using the HIAR model because it is improper,

but we showed that calibration is possible provided the observed value is not the

same for all pixels.

As for the HBC model, mixing of the MCMC algorithm was poor for some

prior specifications. We described diagnostic tools for identifying poor mixing and

investigating reasons for poor mixing. Then we presented methods for improving

mixing: by linking simulations by a sequence of images; by conferring properties

of a mixing distribution onto the distribution of interest; by updating two or more

parameters together; and by integrating out the continuous process.

We explored two extensions of the HCAR model. In the first extension, the

heterogeneous hidden conditional autoregressive (HHCAR) model, the mean and

regression parameters were allowed to vary spatially. Unfortunately, for all priors

of interest mixing of the MCMC algorithm was poor. The poor mixing is confined

entirely to the update of the simulation index. Therefore we fixed the simula-

tion index, and demonstrated the impact of different prior assumptions about the

likelihood parameters on posterior inference. Modelling spatial dependence in the

hidden continuous process and in the heterogeneous likelihood parameters, led to

calibrated predictions with more certainty at the flood boundary than away from

it. We concluded that for the HHCAR model we should assume spatial indepen-

dence in the hidden continuous process, and noted that in this case the HHCAR

model is simply an alternative parameterisation of the HBC model.

In the second extension, the continuous hidden conditional autoregressive

(CHCAR) model, we use continuous valued simulator output. Flood inundation

simulators output water depths, so we have a measure of how wet but not how dry

a pixel is. It is for this reason that we had previously focused on binary models.
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However, we show how we can form a measure of how dry a pixel is, by combining

the simulator output with the topography. For some prior choices the posterior for

the simulation index was bimodal. We proposed that this is because the number

of dry pixels is much greater than the number of wet pixels, and how dry mea-

surements are typically much larger in magnitude than how wet measurements.

We could extend the HCAR model by extending the underlying CAR, for ex-

ample by allowing different variances for each pixel or by allowing the spatial

interaction parameters to vary spatially.

We will now discuss ideas for future work and more general conclusions.

Friction parameters are not stationary between events of different magnitude,

but without data available for a number of different magnitude events, there is no

way to predict how the parameters change. The assumption of parameter station-

arity remains a concern, and should be a topic for future research as data become

more readily available. Another way of addressing this issue is to develop flood

simulators with parameters that are more stationary between events of different

magnitude. A single observation of flood extent would be of greater value to this

type of model.

Methods for calibration using multiple sources of observed data should be devel-

oped. Ideally, we would have spatio-temporal data, e.g. a sequence of observations

of flood extent over time. Failing this a selection of spatial and temporal data

should be used. Observations of flood extent are very useful because this is the

very quantity we want to predict and we do not need to work out how to translate

the simulator inadequacy to the appropriate space, as we would if we had used

a hydrograph. Future research may look at improving the satellite segmentation

algorithm to account for the topography.

A serious practical limitation of all the likelihood models we have developed is

that the associated calibrated predictions either have the deficiency of not tending

to zero probability of flooding on high ground or they show no uncertainty around

the flood outline. We may improve on these calibrated predictions by developing

heterogeneous likelihood models which make use of topographic data.
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It would be interesting to investigate alternatives to the pixel based models

presented here. Shape deformation models which will focus solely on the flooded

area may be of interest, but also any model that uses the water depth from the

simulator output together with the topography.

BACCO is a comprehensive Bayesian method for handling uncertainty in com-

puter codes, and future research might look at extending this method to flood

inundation modelling, using some of the ideas developed within this thesis. The

BACCO method is constructed around Gaussian processes so rather than use a

thresholded Gaussian Markov random field or CAR, we might use a thresholded

Gaussian process. It should be recognised that BACCO is not fully Bayesian

because hyperparameters are fixed for posterior inference. The value of non-

probabilistic methods should be assessed both for situations in which probabilistic

methods are not possible and for those where they are possible but computation-

ally intensive. All of these methods are concerned with making decisions, if the

right decision is made using a method that violates the Bayesian paradigm but

is far more efficient, then it has a value. The most important problem that must

be addressed for non-probabilistic approaches is the way in which the results are

represented. To represent arbitrary measures of skill as probabilities is mislead-

ing, but if the skill can be represented in a non-misleading way then the method

becomes useful.

In conclusion, the main features of this thesis are the development of a Bayesian

framework for calibrating flood inundation simulators, and then making calibrated

predictions of a future event; together with a thorough investigation of a number of

candidate likelihoods. We have shown that the non-probabilistic results obtained

using GLUE can be obtained in a rigorous statistical way, and that with our

method we can make probabilistic predictions of flooding in a future event, which

is not possible with GLUE.
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